TF学习笔记--Tensorflow框架

目标

搭建神经网络,总结搭建八股

基本概念

张量表示数据,计算图来实现神经网络,会话来执行神经网络,优化线上的权重(参数),来得到模型

张量

简单理解为多维数组

  • 0阶张量:单独的数
  • 1阶张量:一维数组
  • 2阶张量:二维数组,i行j列

举例:
t=[ [ [ [ … ] ] ] ]为4阶

数据类型

float32,int32

计算图

搭建计算过程,承载计算节点,只搭建不计算

会话

执行计算图的节点运算
网上盗的别人的图
x1,x2输入
w1,w2权重(参数)
y 为 结果
以上计算图代表的计算是:y=x1*w1+x2*w2
tensorflow实现(x1=1,w1=2,x2=3,x4=4)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值