2020-09-25 机器学习--线性建模:最小二乘法(DAY 1)

1、线性建模

高等数学中学到的相关知识,引入平方损失函数L,主要是最小二乘法。

2、预测

利用求得的模型预测未来的结果,在一定条件下是有参考价值的。

3、向量/矩阵符号

将前面的式子通过矩阵形式表示线性模型。

4、线性模型的非线性响应

在模拟时不一定全是线性的,可以使用如正余弦函数等非线性函数模拟。

5、 泛化与过拟合

泛化就是能产生可靠的预测;过拟合就是过分关注数据,对未来不能很好地预测。克服过拟合的方法是另找一个验证集。交叉验证,即留一验证。

6、 正则化最小二乘法

使函数变得不那么复杂。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页