首先,来看一下OTFS里面各个域的变换关系:
FT即Fourier Transform,
Z
f
Z_f
Zf和
Z
f
Z_f
Zf是Zak Transform。
然后,雷达做脉冲多普勒(Pulse Doppler,PD)是对慢时间做傅里叶变换后得到多普勒域信号,然后测速。这里,慢时间的间隔是一个脉冲周期PRT。这个PRT我觉得可以对应OTFS时域的间隔,即时延域格点的长度(我们一般用T,所以这里PRT=T)。
雷达的实际收发射波形和脉冲多普勒过程如下
我们对采样得到的
x
(
τ
1
)
,
x
(
τ
1
+
PRT
)
,
x
(
τ
1
+
2
PRT
)
,
…
,
x
(
τ
1
+
(
N
−
1
)
×
PRT
)
x(\tau_1),x(\tau_1+\text{PRT}),x(\tau_1+2\text{PRT}),…,x(\tau_1+(N-1)×\text{PRT})
x(τ1),x(τ1+PRT),x(τ1+2PRT),…,x(τ1+(N−1)×PRT)做傅里叶变换,就能得到多普勒域的信号,然后根据多普勒域的结果可以得到目标的速度。
X
(
f
d
)
=
∑
n
=
0
N
−
1
x
(
τ
1
+
n
×
PRT
)
e
−
j
2
π
f
d
(
n
×
PRT
)
X\left( f_{d} \right) = {\sum_{n = 0}^{N - 1}{x\left( {\tau_{1} + n \times \text{PRT}} \right)}}e^{- j2\pi f_{d}(n \times\text{PRT})}
X(fd)=n=0∑N−1x(τ1+n×PRT)e−j2πfd(n×PRT) 一般地,测一个匀速直线运动的目标,得到的结果长下面这样。即在多普勒域上会出现一个脉冲,根据脉冲位置我们就可以得到速度。
由PD的过程,我们可以发现,Doppler域与time域确实是以FT相连接的,但是这里的时间域的采样间隔不太"平常”,即间隔是一个PRT而不是
T
s
T_s
Ts(
T
s
T_s
Ts即满足sampling theorem的采样间隔)。所以,多普勒的分辨率就是
1
N
∗
PRT
\frac{1}{N*\text{PRT} }
N∗PRT1(因为时域采样间隔是PRT,那么频域周期是
1
PRT
\frac{1}{\text{PRT}}
PRT1,所以Doppler域间隔是
1
N
∗
PRT
\frac{1}{N*\text{PRT}}
N∗PRT1)。这类似OTFS里延迟多普勒格点上,多普勒维度的间隔
1
N
T
\frac{1}{NT}
NT1。在PD里面,
N
N
N是发送脉冲的个数,在OTFS里,
N
N
N就是时间格点的个数了,可以看看下面的图。
综上所述,以PRT采样时间域时,做傅里叶变换是多普勒域;以
T
s
T_s
Ts采样时间域,做傅里叶变换是频域,这个Ts是根据采样定理得到的采样间隔,相当于DFT过程。那么,第一种傅里叶变换就是ZAK变换了,而第二种就是经典的傅里叶变换。
下面画一下ZAK变换跟经典傅里叶变换的区别。
-
ZAK变换:→每个时间点 t t t Z x ( τ , ν ) = T ∑ k = − ∞ ∞ x ( τ + k T ) e − j 2 π ν k T Z_{x}\left( {\tau,\nu} \right) = \sqrt{T}{\sum_{k = - \infty}^{\infty}{x\left( {\tau + kT} \right)e^{- j2\pi\nu kT}}} Zx(τ,ν)=Tk=−∞∑∞x(τ+kT)e−j2πνkT 当 τ > T \tau>T τ>T时,采样将会重复,所以在时延域我们只用 τ ∈ [ 0 , T ] \tau\in[0,T] τ∈[0,T]区间就可以表示整个时间域。
-
傅里叶变换(连续):→一个时间点(我们定义为相对于0时刻点的时延 τ \tau τ)+ k T kT kT X ( f ) = F x ( f ) = ∑ t = − ∞ ∞ x ( t ) e − j 2 π f t X(f) = F_{x}(f) = {\sum_{t = - \infty}^{\infty}{x(t)e^{- j2\pi ft}}} X(f)=Fx(f)=t=−∞∑∞x(t)e−j2πft 离散傅里叶变换: ∑ n = 0 N − 1 x ( n ) e − j 2 π n k N \sum_{n = 0}^{N - 1}{x(n)e^{- j2\pi\frac{nk}{N}}} ∑n=0N−1x(n)e−j2πNnk.
参考文献:
- OTFS technical white paper v1.3-160301
- 雷达信号处理