【数学】三次根式问题

三次根式问题\Huge\textsf{三次根式问题}


前置知识!

1.abn=anbn1.\sqrt[n]{ab}=\sqrt[n]{a}*\sqrt[n]{b}

2.a3+b3=(a+b)(a2ab+b3),2.a^3+b^3 = (a+b)(a^2-ab+b^3),

      a3b3=(ab)(a2+ab+b2)\;\;\;a^3-b^3=(a-b)(a^2+ab+b^2)

3.(a+b)3=a3+3a2b+3ab2+b3,3.(a+b)^3 = a^3+3a^2b+3ab^2+b^3,

      (ab)3=a33a2b+3ab2b3\;\;\;(a-b)^3 = a^3-3a^2b+3ab^2-b^3

注:本文的所有数字和未知数 在实数范围 内。


方法:设三次根号的部分为未知数,然后列方程。

例<1>\texttt{例<1>}

解方程:x+453x1631=0.\sqrt[3]{x+45} - \sqrt[3]{x-16}-1=0.

解:设x+453=a,x163=b\sqrt[3]{x+45} = a,\sqrt[3]{x-16} = b

{ab=1(1)a3b3=61(2)\begin{cases}a-b=1(1)\\a^3-b^3=61(2)\end{cases}

(2)(2)(ab)(a2+ab+b2)=61(a-b)(a^2+ab+b^2)=61,

代入(1)(1)a2+ab+b2=61,a^2+ab+b^2 =61,

(ab)2+3ab=61,(a-b)^2+3ab=61,

再次代入得3ab=60,ab=20.3ab = 60,ab=20.

(1)(1)联立解得a1=5,a2=4,a_1=5,a_2=-4,

x1=80,x2=109.\therefore x_1=80,x_2=-109.


例<2>\texttt{例<2>}

化简:253.\sqrt[3]{2-\sqrt{5}}.

解:设253=a,2+53=b,a+b=k\sqrt[3]{2-\sqrt{5}} = a,\sqrt[3]{2+\sqrt{5}} = b,a+b=k

{a3+b3=4(1),ab=1(2)\begin{cases}a^3+b^3=4(1),\\ab=-1(2)\end{cases}

(1)(1)(a+b)(a2ab+b2)=4,(a+b)(a^2-ab+b^2)=4,

代入(2)(2)(a+b)(a2+b2+1)=4,(a+b)(a^2+b^2+1) =4,

(a+b)[(a+b)22ab+1]=4,(a+b)[(a+b)^2-2ab+1]=4,

k[k2+3]=4,k[k^2+3]=4,

k3+3k4=0,k^3+3k-4=0,

(k1)(k2+k+4)(k-1)(k^2+k+4)

k2+k+4k^2+k+4无实数根,所以k=1,k=1,a+b=1.a+b=1.

{ab=1,a+b=1,\therefore \begin{cases}ab=-1,\\a+b=1,\end{cases}

解得a=1±52,a=\dfrac{1\pm\sqrt{5}}{2},

由原式得a<0,a=152a<0,\therefore a=\dfrac{1-\sqrt{5}}{2}

253=152.\therefore \sqrt[3]{2-\sqrt{5}} = \dfrac{1-\sqrt{5}}{2}.


例<3>\texttt{例<3>}

解方程:x+737+x+73x=167x3\dfrac{\sqrt[3]{x+7}}{7}+\dfrac{\sqrt[3]{x+7}}{x}=\dfrac{16}{7}\sqrt[3]{x}.

解:两边同乘7x7x得,xx+73+7x+73=16xx3,x\sqrt[3]{x+7}+7\sqrt[3]{x+7}=16x\sqrt[3]{x},

(x+7)x+73=16xx3(x+7)\sqrt[3]{x+7} = 16x\sqrt[3]{x}

x+73=a,x3=b,\sqrt[3]{x+7} = a,\sqrt[3]{x} = b,

a3a=16b3b,a^3\cdot a = 16b^3\cdot b,

a4=16b4,a=±2b,a^4 =16b^4,a=\pm2b,

因为a0,a=2b.a\geq 0,\therefore a=2b.

x+73=2x3,\therefore \sqrt[3]{x+7} = 2\sqrt[3]{x},

x+7=8x,x+7 = 8x,

x=1.x=1.


例<4>\texttt{例<4>}

解方程:x41x+x23+x1x2=0.(x>0)\dfrac{x^4}{\sqrt[3]{1-x + x^2}}+ x-1-x^2 =0.(x>0)

解:x41x+x23(1x+x2)=0.\dfrac{x^4}{\sqrt[3]{1-x + x^2}}- (1-x + x^2 ) =0.

1x+x23=a,\sqrt[3]{1-x + x^2} =a,

x4aa3=0,\dfrac{x^4}{a}-a^3=0,

x4a4=0,x^4-a^4=0,

x=±a.x=\pm a.

x>0,x=a.\because x>0 ,\therefore x=a.

1x+x23=x,\therefore \sqrt[3]{1-x + x^2}= x, 易得x=1.x=1.


看累了?洗洗眼睛吧qwq

图片来源于pixiv illustration,所以不知道作者QWQ


例<5>\texttt{例<5>}

解方程:x3=3+9+x.\sqrt[3]{x} = \sqrt{3+\sqrt{9+x}}.

解:设x3=a,9+x=b,\sqrt[3]{x} =a,\sqrt{9+x}=b,

{a=3+b  a2=b+3,      (1)b2a3=9  a3=(b+3)(b3)    (2)\begin{cases} a=\sqrt{3+b}\;\Rightarrow a^2 = b+3,\;\qquad\quad \;\;(1)\\b^2 - a^3 = 9\;\Rightarrow a^3 =(b+3)(b-3)\;\;(2) \end{cases}

(1)(1)代入(2)(2)得,

a3=a2(b3),a=b3    (3)a^3 =a^2(b-3),a=b-3\qquad\qquad\qquad\;\;(3)

(1)(3)(1)-(3)得,

a2a6=0,a1=2,a2=3.a^2 -a -6 =0,a_1 = -2,a_2 = 3.

a=3+9+x0,  a=3,x=27.\because a = \sqrt{3+\sqrt{9+x}} \geq 0,\;\therefore a=3,x=27.


例<6>\texttt{例<6>}

a=43+23+1,a=\sqrt[3]{4}+\sqrt[3]{2}+1,3a+3a2+1a3.\dfrac{3}{a}+\dfrac{3}{a^2}+\dfrac{1}{a^3}.

解:a=43+23+1\because a=\sqrt[3]{4}+\sqrt[3]{2}+1

=(23)2+23+1,=(\sqrt[3]{2})^2+\sqrt[3]{2}+1,

(231)a=(231)[(23)2+23+1]\therefore (\sqrt[3]{2}-1)a=(\sqrt[3]{2}-1)[(\sqrt[3]{2})^2+\sqrt[3]{2}+1]

=2+(23)2+23(23)2231=2+(\sqrt[3]{2})^2+\sqrt[3]{2}-(\sqrt[3]{2})^2-\sqrt[3]{2}-1

=21=1.=2-1=1.

这谁tm能想得到啊\scriptsize\sout\textsf{这谁tm能想得到啊}

(231)a=1,1a=231.\therefore (\sqrt[3]{2}-1)a =1,\dfrac{1}{a} =\sqrt[3]{2}-1.

3a+3a2+1a3\therefore \dfrac{3}{a}+\dfrac{3}{a^2}+\dfrac{1}{a^3}

=3(231)+3(231)2+(231)3=3*(\sqrt[3]{2}-1)+3*(\sqrt[3]{2}-1)^2+(\sqrt[3]{2}-1)^3

暴算,原式=1.=1.


例<7>\texttt{例<7>}

化简:143+63+93.\dfrac{1}{\sqrt[3]{4}+\sqrt[3]{6}+\sqrt[3]{9}}.

解:设33=a,23=b\sqrt[3]{3}=a,\sqrt[3]{2}=b

a3b3=1,a^3-b^3=1,

(ab)(a2+ab+b2)=1.(a-b)(a^2+ab+b^2)=1.

原式=1(23)2+2333+(33)2\dfrac{1}{(\sqrt[3]{2})^2+\sqrt[3]{2}*\sqrt[3]{3}+(\sqrt[3]{3})^2}

=1a2+ab+b2=\dfrac{1}{a^2+ab+b^2}

=a3b3a2+ab+b2=\dfrac{a^3-b^3}{a^2+ab+b^2}

=ab=3323.=a-b=\sqrt[3]{3}-\sqrt[3]{2}.


例<8>\texttt{例<8>}

计算:5+2133+52133.\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}.

这题你要是分别计算就麻烦了。

5+2133+52133=x,\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}=x,

x3=(5+2133+52133)3x^3=(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}})^3

=(5+2133)3+35+2133(52133)2+3(5+2133)252133+(52133)3=(\sqrt[3]{5+2\sqrt{13}})^3+3\sqrt[3]{5+2\sqrt{13}}*(\sqrt[3]{5-2\sqrt{13}})^2+3(\sqrt[3]{5+2\sqrt{13}})^2*\sqrt[3]{5-2\sqrt{13}}+(\sqrt[3]{5-2\sqrt{13}})^3

=5+213+35+213352133(5+2133+52133)+5213=5+2\sqrt{13}+3\sqrt[3]{5+2\sqrt{13}}\cdot\sqrt[3]{5-2\sqrt{13}}(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}})+5-2\sqrt{13}

=10+3273(5+2133+52133)=10+3\sqrt[3]{-27}(\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}})

=109x.=10-9x.

x3=109x,\therefore x^3=10-9x,

x3+9x10=0,x^3+9x-10=0,

(x1)(x2+x+10)=0.(x-1)(x^2+x+10)=0.

(x2+x+10)(x^2+x+10)无实数根,x=1.\therefore x=1.

虽然也挺麻烦的\scriptsize\sout\textsf{虽然也挺麻烦的}


柿柿看!

1.1.解方程:5+x34x3=3.\sqrt[3]{5+x}-\sqrt[3]{4-x}=3.

2.2.化简:10+633.\sqrt[3]{10+6\sqrt{3}}.

3.3.计算:20+1423+201423.\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}.

4.4.计算:1+98273+51+98273.(大  \sqrt[3]{-1+\sqrt{\dfrac{-98}{27} }}+\dfrac{5}{\sqrt[3]{-1+\sqrt{\dfrac{-98}{27} }}}.\scriptsize\sout\textsf{(大 毒 瘤}


参考:

西瓜营销号:@余老师微课堂,@远舟数学课堂,@邹老师数学课堂,@吕氏数学,等等;

与一元三次方程有关的化简;

一类三次根式化简的两种方法

转载请注明出处

说句闲话,做营销号的也有好人,不是所有营销号都盗取视频牟取私利的,不要看到营销号就无脑喷好吧。

发布了11 篇原创文章 · 获赞 1 · 访问量 1327
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览