题目链接:http://poj.org/problem?id=2566
分析
这道题的题意是给定一个序列和一个值t,求一个子区间使得其和的绝对值与t的差值最小,如果存在多个,任意解都可行。这道题可以采用尺取法,但是序列中有正有负,不能满足单调性,因此对序列求前缀和,然后对前缀和进行排序,这样就可以满足单调性。为什么可以对前缀和进行排序?个人理解这里需要记住每个前缀和都是从下标0开始,两个区间肯定存在包含与被包含的关系,它们相减得到的结果肯定是大的那个区间的剩余区间。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define P pair<int,int>
const int INF = 0x3f3f3f3f;
const int N = 100000 + 10;
int a[N];
P sum[N];
int main()
{
int n,k,t;
while(scanf("%d%d",&n,&k) && n + k) {
sum[0] = P(0, 0);
for(int i = 1; i <= n; i++) {
scanf("%d",&a[i]);
sum[i] = P(sum[i - 1].first + a[i],i);//可以对区间和进行排序,同时保证了单调性
}
sort(sum,sum + n + 1);//这里把下标0也算进来
int st,en,l,r,d,ans;
for(int i = 0; i < k; i++) {
scanf("%d",&t);
st = 0,en = 1;
d = INF;
while(en <= n) {
int tmp = sum[en].first - sum[st].first;//区间为[st + 1,en],区间和sum[en] - sum[st],且tmp为正数
if(abs(tmp - t) < d) {
d = abs(tmp - t);
ans = tmp;
l = sum[st].second;
r = sum[en].second;
}
if(tmp < t) en++;//如果区间和小于t,区间进行扩展
else if(tmp > t) st++;//如果区间和大于t,区间进行收缩
else break;//相等时差距最小,直接退出
if(st == en) en++;//st不能等于en
}
if(l > r) swap(l,r);
printf("%d %d %d\n",ans,l + 1,r);//这里l加1
}
}
return 0;
}