魔鬼训练-第三天

作业1

1.将向量下标为偶数的分量 (x2, x4, …) 累加, 写出相应表达式.

∑ i = 0 ∣ ∣ i m o d    2 = 0 n x i \sum_{i=0 ||i\mod 2=0}^n{x_i} i=0imod2=0nxi

2.各出一道累加、累乘、积分表达式的习题, 并给出标准答案.

  • 累加:上三角矩阵分量的累加
    ∑ i = 1 n ∑ j = i n x i j \sum_{i=1}^n \sum_{j=i}^n{x_{ij}} i=1nj=inxij

  • 累乘:下三角矩阵分量的累乘
    ∏ i = 1 n ∏ j = 1 i x i j \prod_{i=1}^n\prod_{j=1}^i{x_{ij}} i=1nj=1ixij

  • 积分:二重积分
    ∫ 1 3 ∫ x x 2 1 2 x 2 + x y + y d y d x \int_{1}^{3}\int_{x}^{x^2}{\frac{1}{2}{x^2}+xy+y}\mathrm{d}y\mathrm{d}x 13xx221x2+xy+ydydx

3.你使用过三重累加吗? 描述一下其应用.

通过网上资料了解到,求时间复杂度会应用多重求和
比如
T ( n ) = O ( ∑ i = 1 n ∑ j = 1 i ∑ k = 1 j 1 ) = O ( n 3 ) T(n)=O\left(\sum_{i=1}^n\sum_{j=1}^i\sum_{k=1}^j{1} \right)=O\left(n^3\right) T(n)=O(i=1nj=1ik=1j1)=O(n3)
∑ i = 1 n ∑ j = 1 i ∑ k = 1 j 1 = ∑ i = 1 n i ( i + 1 ) 2 = 1 2 [ n ( n + 1 ) ( 2 n + 1 ) 6 + n ( n + 1 ) 2 ] = n ( n + 1 ) ( n + 2 ) ) 6 \sum_{i=1}^n\sum_{j=1}^i\sum_{k=1}^j{1}=\sum_{i=1}^n \frac{i(i+1)}{2}=\frac{1}{2}\left[\frac{n(n+1)(2n+1)}{6} +\frac{n(n+1)}{2}\right]=\frac{n(n+1)(n+2))}{6} i=1nj=1ik=1j1=i=1n2i(i+1)=21[6n(n+1)(2n+1)+2n(n+1)]=6n(n+1)(n+2))

4.给一个常用的定积分, 将手算结果与程序结果对比.
∫ 2 4 d x 2 x + 1 \int_2^4{\frac{\mathrm{d}x}{2x+1}} 242x+1dx

  • 手算
    { 1 2 ln ⁡ ∣ 2 x + 1 ∣ } ∣ 2 4 = 1 2 ( ln ⁡ 9 − l n 5 ) ≈ 0.29389333245105950409486557030943 \{\frac{1}{2}\ln{|2x+1|}\}|_2^4=\frac{1}{2}(\ln9-ln5)\approx0.29389333245105950409486557030943 {21ln2x+1}24=21(ln9ln5)0.29389333245105950409486557030943
  • 程序
    在这里插入图片描述

作业2

自己写一个小例子 (n = 3,m = 1) 来验证最小二乘法.

数据集
X = [ 1 10.0 1 9.8 1 11.2 ] \mathbf{X}=\left[\begin{matrix} 1 & 10.0 \\ 1 & 9.8 \\ 1 & 11.2 \end{matrix} \right] X=11110.09.811.2
标签 Y = [ 0.3 , 0.2 , 0.5 ] T \mathbf{Y}=[0.3,0.2,0.5]^{T} Y=[0.3,0.2,0.5]T
建立线性模型为 y = f ( x ) = a x + b y=f(x)=ax+b y=f(x)=ax+b
系数向量 w = [ w 1 , w 2 ] T , w 1 = b \mathbf{w}=[w_1,w_2]^{T},w_1=b w=[w1,w2]T,w1=b
其中
X w ≈ Y \mathbf{X}\mathbf{w} \approx \mathbf{Y} XwY
要求线性模型,需要满足 arg min ⁡ w ∣ ∣ X w − Y ∣ ∣ 2 2 \argmin_{\mathbf{w}} ||\mathbf{X} \mathbf{w} - \mathbf{Y}||_2^2 wargminXwY22

w = ( X T X ) − 1 X T Y \mathbf{w}=\left(\mathbf{X}^{T}\mathbf{X} \right)^{-1}\mathbf{X}^{T}\mathbf{Y} w=(XTX)1XTY
求得 w = [ − 1.709302330.19767442 ] T \mathbf{w}=[-1.70930233 0.19767442]^{T} w=[1.709302330.19767442]T
a=0.19767442
b=-1.70930233

作业3

自己推导一遍, 并描述这个方法的特点 (不少于 5 条).

1.采用 sigmoid 函数,实现二分类。
2.推导过程中将 w \mathbf{w} w当做参数使用
3.用 x w \mathbf{xw} xw表示点与空间向量的距离
4.在推导过程使用对数 log,简化计算过程
5.将距离转化成概率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值