【论文阅读】An Iterative Instance Selection Based Framework for Multiple-Instance Learning

题目

An Iterative Instance Selection Based Framework for Multiple-Instance Learning
一种基于迭代实例选择的多示例学习框架
2018 IEEE 30th International Conference on Tools with Artificial Intelligence -C

摘要

基于实例选择的模型是一种有效的多示例学习(MIL)框架,它通过将示例(实例包)嵌入到由一些概念(由一些选定实例表示)形成的新特征空间中来解决 MIL 问题。
大多数先前的研究使用单点概念进行实例选择,其中每个可能的概念仅由单个实例表示。在本文中,我们应用多点概念来选择实例,其中每个可能的概念由一组相似的实例联合表示。此外,我们基于多点概念建立了一个基于迭代实例选择的 MIL 框架,保证自动收敛到给定问题所需的概念数量。
实验结果表明,与最先进的 MIL 算法相比,所提出的框架不仅可以更好地处理常见的 MIL 问题,还可以更好地处理混合问题。

相关概念

标准MIL假设
广义MIL假设:正包由与正类相关的几种不同类型的实例,还有其他不相关的实例组成。负包可能包含与正类相关的实例
混合MIL假设:一些正包包含正实例,另一些正包不包含这样的正实例但包含与正类相关的几个正实例

实例原型——表示可能概念(possible concepts)
当前研究通常使用单点概念(single-point concepts),每个概念由单个实例表示。
由单个实例表示的概念的代表能力比一组与该概念相关的相似实例 更弱

本文提出了一个新的基于实例选择的MIL框架,称为MILMPC,它应用多点概念(Multiple-Point)来建立MIL的迭代实例选择模型
多点概念:假设每个可能的概念都与一组相似的实例相关联,而不是与单个实例相关联

如果来自正包的单个实例与目标概念(即正类)相关,则每个正包中的任何最近邻居都应该是相关的。根据标准或广义MIL假设,每个正包都包含与目标概念相同类型的相关实例

算法

符号系统

符号表示
D D D训练集
B i + = { x i j + ∣ j = 1 , … , n i + } B_i^+=\{\boldsymbol{x}_{ij}^+ | j=1,\dots,n_i^+\} Bi+={xij+j=1,,ni+}正包
x i j + \boldsymbol{x}_{ij}^+ xij+实例
B i − , x i j − , n i − B_i^-,\boldsymbol{x}_{ij}^-,n_i^- Bixijni同上
B i B_i Bi
x \boldsymbol{x} x实例
m + m^+ m+正包个数
m − m^- m负包个数
n c nc nc预定义的最大概念数(非常大)
n a c nac nac实际学习的正概念数量

MIL假设的进一步分析

对于标准MIL假设,所有正包都包含同一类实例(正实例),正实例与目标概念(正类)相关
对于广义MIL假设,每个正包包含几种不同类型的实例,这些实例与正类相关。比如海滩图像中包含沙滩和海洋
与目标概念相关的相同类型的实例出现在所有正包中
动机:从一个正包中的一个相关实例 x 开始在每个正包中搜索它的最近邻居,我们将得到一组相似的实例。显然,这些相似的实例很可能也属于同一类。因此,它们可以表示一个概念

MILMPC方法概述

step1:概念提取:从所有正包中收集实例,并在每个实例中从每个正袋中搜索其最近邻居,每一组邻居都被视为一个候选的多点概念(candidate multiple-point concepts)
step2:相关性(relevance)计算:根据相关性评估标准,计算每个候选概念与正类的相关性
step3:初始概念选择:从候选概念中选择相关性最高的概念,并加入空的多点概念集(multiple-point-concept set)
step4:冗余度(redundancy)计算:计算每个候选概念到概念集的冗余
step5:概念选择:如果存在最非冗余且相关的候选概念,将其添加到概念集,并返回步骤4;否则终止迭代
在这里插入图片描述

迭代实例选择方法的组成部分

candidate multiple-point concepts
C x C_{\boldsymbol{x}} Cx,包括 x \boldsymbol{x} x在每个正包中的最近邻
C x = { n x ( B i + ) ∣ B i + ∈ D } C_{\boldsymbol{x}}=\{n_{\boldsymbol{x}}(B_i^+)|B_i^+\in D\} Cx={nx(Bi+)Bi+D}
B i + B_i^+ Bi+中, x {\boldsymbol{x}} x的最近邻居
n x ( B i + ) = argmin x i j + ∈ B i + ∥ x i j + − x ∥ 2 2 n_{\boldsymbol{x}}(B_i^+)=\mathop{\text{argmin}}\limits_{{\boldsymbol{x}}_{ij}^+\in B_i^+}\| \boldsymbol{x}_{ij}^+ -\boldsymbol{x}\|_2^2 nx(Bi+)=xij+Bi+argminxij+x22
对所有正包中的实例提取一组候选概念

相关性定义
在所有正包中共存的近邻实例的数量反应了 C x C_{\boldsymbol{x}} Cx与目标概念(正类)的相关程度。使用 C x C_{\boldsymbol{x}} Cx中所有实例的平均数来评估相关性:

基于majority voting的相关性: r v ( C x ) r_v(C_{\boldsymbol{x}}) rv(Cx), C x = { x k ∣ k = 1 , … , m + } C_{\boldsymbol{x}}=\{\boldsymbol{x}_k|k=1,\dots,m^+\} Cx={xkk=1,,m+}
r v ( C x ) = 1 m + ∑ k = 1 m + ∣ N x k ∩ N C x ∣ , r_v(C_{\boldsymbol{x}})=\frac{1}{m^+}\mathop{\sum}\limits_{k=1}^{m^+}|N_{\boldsymbol{x}_k} \cap N_{C_{\boldsymbol{x}}}|, rv(Cx)=m+1k=1m+NxkNCx,
N x k = C x k N_{\boldsymbol{x}_k}=C_{{\boldsymbol{x}_k}} Nxk=Cxk,由 x k {\boldsymbol{x}_k} xk从所有正包中确定的近邻
N C x = { n C x ( B i + ) ∣ B i + ∈ D } N_{C_{\boldsymbol{x}}}=\{n_{C_{\boldsymbol{x}}}(B_i^+)|B_i^+\in D\} NCx={nCx(Bi+)Bi+D} n C x ( B i + ) = v ( { n x k ( B i + ) ∣ x k ∈ C x } ) n_{C_{\boldsymbol{x}}}(B_i^+)=v(\{n_{\boldsymbol{x}_k}(B_i^+)|{\boldsymbol{x}_k} \in C_{\boldsymbol{x}}\}) nCx(Bi+)=v({nxk(Bi+)xkCx}) v ( ⋅ ) v(\cdot) v()是一个投票函数
(对 C x C_{\boldsymbol{x}} Cx中的每一个实例 x k \boldsymbol{x}_k xk找其在 B i + B_i^+ Bi+中得到近邻,则 B i + B_i^+ Bi+中为近邻次数最多的实例作为 C x C_{\boldsymbol{x}} Cx B i + B_i^+ Bi+中的近邻;如此C_{\boldsymbol{x}}对每一个正包都有一个近邻,得到 N C x N_{C_{\boldsymbol{x}}} NCx
(如果交集为空呢?)

冗余度
冗余是指一个候选概念 C x C_{\boldsymbol{x}} Cx在多大程度上对当前概念集(multiple-point concept set)是冗余的
这表明 C x C_{\boldsymbol{x}} Cx C C C的冗余与 C x C_{\boldsymbol{x}} Cx C C C的相对补码的大小有关(the size of the relative complement )
d ( C x ) = ∣ C x / C ∣ d(C_{\boldsymbol{x}})=|{C_{\boldsymbol{x}}}/C{}| d(Cx)=Cx/C

伪代码

在这里插入图片描述
C = { x k ∣ k = 1 , … , n } C=\{{\boldsymbol{x}_k|k=1,\dots,n}\} C={xkk=1,,n}
特征向量 ξ ( B i ) = [ h ( B i , x 1 ) , … , h ( B i , x n ) ] T \xi(B_i)=[h(B_i,\boldsymbol{x}_1),\dots,h(B_i,\boldsymbol{x}_n)]^T ξ(Bi)=[h(Bi,x1),,h(Bi,xn)]T
分类器:具有高斯核的标准 SVM,LIBSVM 用于训练所有 SVM

实验

数据集

遵循标准MIL假设:MUSK1 、MUSK2
遵循广义假设:COREL
例如,一张海滩图像不包含任何真正的海滩区域,而是包含沙子和水区域,而这些块共同决定了该图像的类别。
遵循混合假设:Elephant, Fox, and Tiger
一些正包可能包含目标动物,而其他正包可能只包含目标动物的部分而不包含目标动物

对比算法

在这里插入图片描述
在这里插入图片描述
传统的 MIL 算法或大多数现有的基于实例选择的算法都以特定假设开始,但试图解决不同类型的 MIL 问题。然而,依赖于一个假设很可能会失去解决另一个假设所支持的问题的能力

收敛性

在这里插入图片描述
概念集的大小在多次迭代或多次迭代后增加到最大值,但小于所有正包的实例数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值