【论文阅读】An Iterative Instance Selection Based Framework for Multiple-Instance Learning

题目

An Iterative Instance Selection Based Framework for Multiple-Instance Learning
一种基于迭代实例选择的多示例学习框架
2018 IEEE 30th International Conference on Tools with Artificial Intelligence -C

摘要

基于实例选择的模型是一种有效的多示例学习(MIL)框架,它通过将示例(实例包)嵌入到由一些概念(由一些选定实例表示)形成的新特征空间中来解决 MIL 问题。
大多数先前的研究使用单点概念进行实例选择,其中每个可能的概念仅由单个实例表示。在本文中,我们应用多点概念来选择实例,其中每个可能的概念由一组相似的实例联合表示。此外,我们基于多点概念建立了一个基于迭代实例选择的 MIL 框架,保证自动收敛到给定问题所需的概念数量。
实验结果表明,与最先进的 MIL 算法相比,所提出的框架不仅可以更好地处理常见的 MIL 问题,还可以更好地处理混合问题。

相关概念

标准MIL假设
广义MIL假设:正包由与正类相关的几种不同类型的实例,还有其他不相关的实例组成。负包可能包含与正类相关的实例
混合MIL假设:一些正包包含正实例,另一些正包不包含这样的正实例但包含与正类相关的几个正实例

实例原型——表示可能概念(possible concepts)
当前研究通常使用单点概念(single-point concepts),每个概念由单个实例表示。
由单个实例表示的概念的代表能力比一组与该概念相关的相似实例 更弱

本文提出了一个新的基于实例选择的MIL框架,称为MILMPC,它应用多点概念(Multiple-Point)来建立MIL的迭代实例选择模型
多点概念:假设每个可能的概念都与一组相似的实例相关联,而不是与单个实例相关联

如果来自正包的单个实例与目标概念(即正类)相关,则每个正包中的任何最近邻居都应该是相关的。根据标准或广义MIL假设,每个正包都包含与目标概念相同类型的相关实例

算法

符号系统

符号表示
D D D训练集
B i + = { x i j + ∣ j = 1 , … , n i + } B_i^+=\{\boldsymbol{x}_{ij}^+ | j=1,\dots,n_i^+\} Bi+={xij+j=1,,ni+}正包
x i j + \boldsymbol{x}_{ij}^+ xij+实例
B i − , x i j − , n i − B_i^-,\boldsymbol{x}_{ij}^-,n_i^- Bixijni同上
B i B_i Bi
x \boldsymbol{x} x实例
m + m^+ m+正包个数
m − m^- m负包个数
n c nc nc预定义的最大概念数(非常大)
n a c nac nac实际学习的正概念数量

MIL假设的进一步分析

对于标准MIL假设,所有正包都包含同一类实例(正实例),正实例与目标概念(正类)相关
对于广义MIL假设,每个正包包含几种不同类型的实例,这些实例与正类相关。比如海滩图像中包含沙滩和海洋
与目标概念相关的相同类型的实例出现在所有正包中
动机:从一个正包中的一个相关实例 x 开始在每个正包中搜索它的最近邻居,我们将得到一组相似的实例。显然,这些相似的实例很可能也属于同一类。因此,它们可以表示一个概念

MILMPC方法概述

step1:概念提取:从所有正包中收集实例,并在每个实例中从每个正袋中搜索其最近邻居,每一组邻居都被视为一个候选的多点概念(candidate multiple-point concepts)
step2:相关性(relevance)计算:根据相关性评估标准,计算每个候选概念与正类的相关性
step3:初始概念选择:从候选概念中选择相关性最高的概念,并加入空的多点概念集(multiple-point-concept set)
step4:冗余度(redundancy)计算:计算每个候选概念到概念集的冗余
step5:概念选择:如果存在最非冗余且相关的候选概念,将其添加到概念集,并返回步骤4;否则终止迭代
在这里插入图片描述

迭代实例选择方法的组成部分

candidate multiple-point concepts
C x C_{\boldsymbol{x}} Cx,包括 x \boldsymbol{x} x在每个正包中的最近邻
C x = { n x ( B i + ) ∣ B i + ∈ D } C_{\boldsymbol{x}}=\{n_{\boldsymbol{x}}(B_i^+)|B_i^+\in D\} Cx={nx(Bi+)Bi+D}
B i + B_i^+ Bi+中, x {\boldsymbol{x}} x的最近邻居
n x ( B i + ) = argmin x i j + ∈ B i + ∥ x i j + − x ∥ 2 2 n_{\boldsymbol{x}}(B_i^+)=\mathop{\text{argmin}}\limits_{{\boldsymbol{x}}_{ij}^+\in B_i^+}\| \boldsymbol{x}_{ij}^+ -\boldsymbol{x}\|_2^2 nx(Bi+)=xij+Bi+argminxij+x22
对所有正包中的实例提取一组候选概念

相关性定义
在所有正包中共存的近邻实例的数量反应了 C x C_{\boldsymbol{x}} Cx与目标概念(正类)的相关程度。使用 C x C_{\boldsymbol{x}} Cx中所有实例的平均数来评估相关性:

基于majority voting的相关性: r v ( C x ) r_v(C_{\boldsymbol{x}}) rv(Cx), C x = { x k ∣ k = 1 , … , m + } C_{\boldsymbol{x}}=\{\boldsymbol{x}_k|k=1,\dots,m^+\} Cx={xkk=1,,m+}
r v ( C x ) = 1 m + ∑ k = 1 m + ∣ N x k ∩ N C x ∣ , r_v(C_{\boldsymbol{x}})=\frac{1}{m^+}\mathop{\sum}\limits_{k=1}^{m^+}|N_{\boldsymbol{x}_k} \cap N_{C_{\boldsymbol{x}}}|, rv(Cx)=m+1k=1m+NxkNCx,
N x k = C x k N_{\boldsymbol{x}_k}=C_{{\boldsymbol{x}_k}} Nxk=Cxk,由 x k {\boldsymbol{x}_k} xk从所有正包中确定的近邻
N C x = { n C x ( B i + ) ∣ B i + ∈ D } N_{C_{\boldsymbol{x}}}=\{n_{C_{\boldsymbol{x}}}(B_i^+)|B_i^+\in D\} NCx={nCx(Bi+)Bi+D} n C x ( B i + ) = v ( { n x k ( B i + ) ∣ x k ∈ C x } ) n_{C_{\boldsymbol{x}}}(B_i^+)=v(\{n_{\boldsymbol{x}_k}(B_i^+)|{\boldsymbol{x}_k} \in C_{\boldsymbol{x}}\}) nCx(Bi+)=v({nxk(Bi+)xkCx}) v ( ⋅ ) v(\cdot) v()是一个投票函数
(对 C x C_{\boldsymbol{x}} Cx中的每一个实例 x k \boldsymbol{x}_k xk找其在 B i + B_i^+ Bi+中得到近邻,则 B i + B_i^+ Bi+中为近邻次数最多的实例作为 C x C_{\boldsymbol{x}} Cx B i + B_i^+ Bi+中的近邻;如此C_{\boldsymbol{x}}对每一个正包都有一个近邻,得到 N C x N_{C_{\boldsymbol{x}}} NCx
(如果交集为空呢?)

冗余度
冗余是指一个候选概念 C x C_{\boldsymbol{x}} Cx在多大程度上对当前概念集(multiple-point concept set)是冗余的
这表明 C x C_{\boldsymbol{x}} Cx C C C的冗余与 C x C_{\boldsymbol{x}} Cx C C C的相对补码的大小有关(the size of the relative complement )
d ( C x ) = ∣ C x / C ∣ d(C_{\boldsymbol{x}})=|{C_{\boldsymbol{x}}}/C{}| d(Cx)=Cx/C

伪代码

在这里插入图片描述
C = { x k ∣ k = 1 , … , n } C=\{{\boldsymbol{x}_k|k=1,\dots,n}\} C={xkk=1,,n}
特征向量 ξ ( B i ) = [ h ( B i , x 1 ) , … , h ( B i , x n ) ] T \xi(B_i)=[h(B_i,\boldsymbol{x}_1),\dots,h(B_i,\boldsymbol{x}_n)]^T ξ(Bi)=[h(Bi,x1),,h(Bi,xn)]T
分类器:具有高斯核的标准 SVM,LIBSVM 用于训练所有 SVM

实验

数据集

遵循标准MIL假设:MUSK1 、MUSK2
遵循广义假设:COREL
例如,一张海滩图像不包含任何真正的海滩区域,而是包含沙子和水区域,而这些块共同决定了该图像的类别。
遵循混合假设:Elephant, Fox, and Tiger
一些正包可能包含目标动物,而其他正包可能只包含目标动物的部分而不包含目标动物

对比算法

在这里插入图片描述
在这里插入图片描述
传统的 MIL 算法或大多数现有的基于实例选择的算法都以特定假设开始,但试图解决不同类型的 MIL 问题。然而,依赖于一个假设很可能会失去解决另一个假设所支持的问题的能力

收敛性

在这里插入图片描述
概念集的大小在多次迭代或多次迭代后增加到最大值,但小于所有正包的实例数

an an iterative solver is a method that solves a problem by repeatedly refining an initial guess until a desired accuracy is achieved. It is typically used for models with large and complex systems of equations, where it is difficult or time-consuming to solve the problem directly. On the other hand, a direct solver directly computes the exact solution to a problem by solving the equations in a single step. It is typically used for models with smaller and less complex systems of equations, where the computational cost of solving the problem directly is reasonable. In the case of this model, an iterative solver was chosen. This decision was likely made based on the nature and complexity of the equations involved. Iterative solvers are known for their ability to handle large and complex systems of equations more efficiently than direct solvers. They can provide approximate solutions with acceptable accuracy, even for problems where a direct solution is possible. However, it is important to note that using a direct solver could potentially result in a more accurate solution, as it computes the exact solution to the problem. If computational resources and time were not constraints, a direct solver may have been a preferred choice. Nevertheless, the iterative solver was deemed sufficient and satisfactory for the purposes of this model, considering the constraints and trade-offs involved. Overall, the choice between an iterative solver and a direct solver depends on the specific characteristics of the model and the desired level of accuracy within the given computational resources and time constraints.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值