subsequence 1(dp)

题目链接:
https://ac.nowcoder.com/acm/contest/885/G?&headNav=acm

1,我们可以利用组合数求出长度大于str2的个数。
2,剩下的就是长度相同时的个数了。
我们可以定义一个dp状态。
dp[i][j] 表示str1前i位和str2前j位完全匹配的个数。
那么很明显的递推式了。
首先不管当前str1[i] 和str2[j]的大小如何。dp[i][j] 一定是等于dp[i- 1][j]的。
因为str1的前i- 1个字符和str2的前j个字符完全匹配的个数为dp[i-1][j]。
所以dp[i][j] = dp[i-1][j]。
然后考虑str1[i]与str2[j]的大小情况。
dp[i][j] = dp[i][j] + dp[i -1][j - 1] (str1[i] == str2[j])
if(str1[i] > str2[j])
那么我们就可以用组合数来求解这个了。
同时注意爆int

#include"stdio.h"
#include"string.h"
#include"algorithm"
using namespace std;
#define mod 998244353
typedef long long ll;
int n,m,T;
char str1[3010],str2[3010];
int c[3010][3010];
int dp[3010][3010];

int main()
{
    c[0][0] = 1;
    for(int i = 1; i <= 3000; i ++)
         {
            c[i][0] = 1; c[i][i] = 1;
             for(int j = 1; j < i; j ++)
             {
                 c[i][j] = c[i - 1][j - 1] + c[i - 1][j];
                 c[i][j] %= mod;
             }
         }
    scanf("%d",&T);
    while(T --)
    {
        scanf("%d%d",&n,&m);
        scanf("%s%s",str1 + 1,str2 + 1);
       
        int len1 = strlen(str1 + 1);
        int len2 = strlen(str2 + 1);
        ll sum = 0;
        for(int i = 0; i <= len1; i ++)
            dp[i][0] = 1;
        for(int i = 1; i <= len1; i ++)
        {
            for(int j = 1; j <= min(len2,i); j ++)
            {
                dp[i][j] = dp[i - 1][j];
                if(str1[i] == str2[j])
                    dp[i][j] = (dp[i][j] + (ll)dp[i - 1][j - 1]) % mod;
                if(str1[i] > str2[j])//前j-1个字符完全匹配的个数乘上,后面的组合数。
                    sum = (sum + (ll)dp[i - 1][j -1] * c[len1 - i][len2 - j]) % mod;
            }
        }
        for(int i = 1; i <= len1 - len2; i ++)
        {
            if(str1[i] == '0') continue;
            for(int j = len2; j <= len1; j ++)
                sum = (sum + c[len1 - i][j]) % mod;
        }
        printf("%lld\n",sum);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值