题目链接:
https://ac.nowcoder.com/acm/contest/885/G?&headNav=acm
1,我们可以利用组合数求出长度大于str2的个数。
2,剩下的就是长度相同时的个数了。
我们可以定义一个dp状态。
dp[i][j] 表示str1前i位和str2前j位完全匹配的个数。
那么很明显的递推式了。
首先不管当前str1[i] 和str2[j]的大小如何。dp[i][j] 一定是等于dp[i- 1][j]的。
因为str1的前i- 1个字符和str2的前j个字符完全匹配的个数为dp[i-1][j]。
所以dp[i][j] = dp[i-1][j]。
然后考虑str1[i]与str2[j]的大小情况。
dp[i][j] = dp[i][j] + dp[i -1][j - 1] (str1[i] == str2[j])
if(str1[i] > str2[j])
那么我们就可以用组合数来求解这个了。
同时注意爆int
#include"stdio.h"
#include"string.h"
#include"algorithm"
using namespace std;
#define mod 998244353
typedef long long ll;
int n,m,T;
char str1[3010],str2[3010];
int c[3010][3010];
int dp[3010][3010];
int main()
{
c[0][0] = 1;
for(int i = 1; i <= 3000; i ++)
{
c[i][0] = 1; c[i][i] = 1;
for(int j = 1; j < i; j ++)
{
c[i][j] = c[i - 1][j - 1] + c[i - 1][j];
c[i][j] %= mod;
}
}
scanf("%d",&T);
while(T --)
{
scanf("%d%d",&n,&m);
scanf("%s%s",str1 + 1,str2 + 1);
int len1 = strlen(str1 + 1);
int len2 = strlen(str2 + 1);
ll sum = 0;
for(int i = 0; i <= len1; i ++)
dp[i][0] = 1;
for(int i = 1; i <= len1; i ++)
{
for(int j = 1; j <= min(len2,i); j ++)
{
dp[i][j] = dp[i - 1][j];
if(str1[i] == str2[j])
dp[i][j] = (dp[i][j] + (ll)dp[i - 1][j - 1]) % mod;
if(str1[i] > str2[j])//前j-1个字符完全匹配的个数乘上,后面的组合数。
sum = (sum + (ll)dp[i - 1][j -1] * c[len1 - i][len2 - j]) % mod;
}
}
for(int i = 1; i <= len1 - len2; i ++)
{
if(str1[i] == '0') continue;
for(int j = len2; j <= len1; j ++)
sum = (sum + c[len1 - i][j]) % mod;
}
printf("%lld\n",sum);
}
}