【文献译文】ComNet: combination of deep learning and expert knowledge in OFDM receivers

本文提出了一种模型驱动的深度学习(DL)方法,结合专家知识改进正交频分复用(OFDM)接收机。与全连接深度神经网络(FC-DNN)不同,Comnet接收机采用逐块信号处理,将接收机分为信道估计和信号检测两个子网,每个子网由DNN构建并用传统方法初始化。这种方法在信道估计和数据恢复的准确性上优于线性最小均方误差方法和FC-DNN,并在信噪比、计算复杂度和内存利用率方面表现出优势。
摘要由CSDN通过智能技术生成

摘要:
在本文中,我们提出了一种模型驱动的深度学习(DL)方法,将DL与专家知识相结合,以取代现有的正交频分复用接收机在无线通信中的应用。与数据驱动的全连通深度神经网络(FC-DNN)方法不同,我们采用逐块的信号处理方法,将接收机分为信道估计子网和信号检测子网。每个子网由一个DNN构造,并使用现有的简单和传统的解决方案作为初始化。与线性最小均方误差法相比,模型驱动DL接收机具有更高的信道估计精度,并且与现有方法和FC-DNN相比,具有更高的数据恢复精度。仿真结果进一步验证了该方法在信噪比方面的鲁棒性,并在计算复杂度和内存利用率方面优于FC-DNN方法。

第一节导言

深入学习在计算机视觉和自然语言处理等领域取得了巨大的成功,并被考虑应用于无线通信领域。本文讨论了DL在物理层中的潜在应用。[1], [2],和[3]。中的数据驱动DL方法。[4]采用完全连接的深度神经网络(FC-DNN)代替正交频分复用(OFDM)接收机的所有模块.上述文献对传统的OFDM接收机提出了挑战,并将接收机视为黑匣子。但是,它并没有利用专家的知识。1在无线通信中,这反过来又使基于FC-DNN的接收机无法解释和不可预测.此外,数据驱动的方法依靠大量的数据训练大量的参数,因此收敛速度慢,计算复杂度高。

为了解决上述问题,可以使用模型驱动的DL方法.中的一个通用模型驱动DL框架。[5]能够克服大量训练数据的巨大需求。此外,模型驱动的DL网络可以利用领域知识清晰地解释特殊设计的模型族,从而促进性能的进一步提高。在无线通信领域,收发器中的所有模块都得到了严格的开发,从而使现有的算法成为模型驱动DL方法中模型族的基础。在无线通信中引入专家知识形成模型驱动DL解决方案的优越性已在无线互感器网络(Rtn)的实例中得到了证明。[1],信道状态信息(Csi)辅助mimo通信。[6]和PAPR减少网络(PRNet)[7]。用于物理层通信的模型驱动dl的全面概述可在[8].

在本文中,我们提出了一种模型驱动的dl结构,称为comnet,以取代传统的fc-dnn ofdm接收机。[4],它将DL和无线通信的专家知识结合起来。建议中的comnet接收机使用dl来简化现有的接收机模型,如信道估计(CE)模块和信号检测(Sd)模块,而不是用整个dl架构替换接收机,然后集成通信信息,如rtn。[1],csi辅助mimo通信[6]和PRNet[7]。与传统的lmmse-mmse方法和fc-dnn方法相比,该模型驱动dl方法具有更好的性能。[4]与fc-dnn ofdm接收机相比,具有较快的收敛速度和较少的参数。[4].

第二节 comnet

这一部分介绍了用于OFDM系统的Comnet接收机。基于dl的子网(包括ce和sd子网)的体系结构和细节将在第二A节。在……里面第二节B阐述了网络权值的初始化、代价函数和优化器的选择以及超参数的配置。

A.Comnet架构

在OFDM系统中,发送的信号由发送的数据向量组成,xD ,以及飞行员符号向量,xD ,这是接收者所知道的。相应地,接收到的信号包括接收到的数据向量,yD ,以及接收到的导频符号向量,yD 。传统的ofdm接收机恢复对发送的二进制数据的估计。b^ 给定频域信号,yD , yD ,和xD 通过CE,SD和正交幅度调制(QAM)解调顺序。

图1说明了Comnet接收机的体系结构。Comnet接收机的输入和输出与传统的OFDM接收机相似,而Comnet接收机采用两个级联DL子网代替传统的OFDM接收机。而不是使用直接的fc-dnn,如[4]在所提出的Comnet接收机中,CE和SD子网采用传统的通信方案作为初始化,并应用DL网络对粗输入进行细化。Comnet接收机还充分利用了传统方法,并将它们连接起来,形成一个相对健壮的恢复,以适应各种情况。

Fig. 1. - ComNet receiver architecture. The two subnets use traditional communication solutions as initializations, and apply DL networks to refine the coarse inputs. The dotted short-path provides a relatively robust candidate of the binary symbols recovery.
图1.
Comnet接收机体系结构。这两个子网使用传统的通信解决方案作为初始化,并应用DL网络对粗输入进行细化。虚线短路径提供了二进制符号恢复的相对健壮的候选。

显示所有

图2显示CE子网。它的输入是最小二乘(LS)CE,由
h^LS(k)=yP(k)xP(k),(1)
视图源Right-click on figure for MathML and additional features.哪里xP(k) 和yP(k) 中的导频符号和相应的接收符号。k -第二副载波。然后h^LS 被LS_RefineNet用于生成精确的CE。h^ ,其中LS_RefineNet是一个单层DNN。它的输入是一个128维实值信号向量,它由h^LS 。下一层的神经元数为128,这些神经元没有激活函数,即是一个线性信道估计器。

Fig. 2. - CE subnet. A subnet type initialized by LS CE. Then the real-valued initialization is refined by LS_RefineNet.
图2.
行政长官子网由LS CE初始化的子网类型。然后用LS_RefineNet对实值初始化进行细化.

显示所有

在sd子网中,输入只是发送符号的零强迫(Zf)sd,由
xZF(k)=yD(k)h(k).(2)
视图源Right-click on figure for MathML and additional features.这个x^ZF 被ZF_RefineNet用于预测8个连续子载波上8个符号的二进制数据。对于64个子载波的OFDM系统,需要8个独立的SD子网。总之,ZF_RefineNet使用x^ZF , h^ ,和yD 以获得更准确的传输数据估计。根据对接收机复杂度和数据恢复精度的不同要求,我们提出了两种不同形式的ZF_RefineNet。

FC-SD每层有120个神经元和48个神经元组成的两层FC-DNN。的实部和虚部的连接。x^ZF 。隐藏层的激活函数使用relu函数,fRe(a)=马克斯(0,a) ,而输出层是逻辑Sigmoid函数,fSi(a)=11+e−a .

双向短时记忆(BiLSTM)-SD涉及一个三层64时间步长的bilstm网络。[9]每个层有20个、10个和6个隐藏单元,然后是一个具有48个神经元的单层fc-dnn,如图3。考虑到zf sd的性能退化,bilstm-sd的输入集成。yD 和h^ 也是。输出层的激活函数是逻辑乙状结肠函数。

Fig. 3. - Detection subnet with BiLSTM-Detection as ZF_RefineNet. A subnet type initialized by ZF solution, in which ZF_RefineNet adopts BiLSTM-Detection with a FC-DNN layer.
图3.
使用BiLSTM的检测子网-检测为ZF_RefineNet。ZF_RefineNet通过ZF解决方案初始化的子网类型,其中ZF_RefineNet采用BiLSTM-检测和FC-DNN层.

显示所有

上述48个输出对应于从8个连续子载波中估计的48比特,每个符号为64-QAM,每个子载波为6比特。由于逻辑Sigmoid函数将输入映射到间隔[0,1],如果输出大于0.5,则接收到的二进制符号为“1”,否则为“0”。然而,除最后一层外,每一层的层数和神经元层数取决于经验试验。

B.培训规格

为了加快训练过程,考虑了网络权值的初始化。CE子网由实值线性最小均方误差(Lmmse)ce权矩阵初始化。W~LMMSE 从…
hLMMSE=WLMMSEh~LS,(3)
视图源Right-click on figure for MathML and additional features.哪里
W~LMMSE=[Re{WLMMSE}Im{WLMMSE}−Im{WLMMSE}Re{WLMMSE}].(4)
视图源Right-click on figure for MathML and additional features. h~LMMSE 和h~LS LMMSE CE的实部和虚部的连接h^LMMSE 和LS CEh^LS 分别。特别是LMMSE CE权重矩阵,W^LMMSE ,采用[10]。中的方法初始化了SD子网fc层中的乘法权值。[11].

初始化后,dl网络通过最小化b^ 和原始传输二进制符号b 若要调整网络参数,请执行以下操作。在下一节中,训练数据来自于系统配置下的仿真。我们采用均方误差代价函数,如[4]和自适应矩估计(ADAM)优化器[12]两个子网。这两个子网按顺序在TensorFlow中进行训练,其中CE子网被训练2,000个历元,然后固定,然后为SD子网训练5,000个历元。端到端的比较表明,序贯训练可以保证每个块的最优性,在网络参数要求较少的情况下,可以加快训练过程。每个时代使用50个小批次,总批次大小为1,000.将学习速率设为阶梯函数,实现初值为0.001,CE子网每1,000个历元减少10倍,SD子网每2,000个历元减少5倍。

第三节。数值结果
模拟在三种情况下进行,如[4]、线性、循环前缀(CP)删除和裁剪,它们对应于数字中没有后缀、“_CP”后缀和“_CR”后缀。由于本文的主要贡献在于提出了一种新的模型驱动的OFDM接收机结构,而不是解决非线性问题,因此传统的非线性补偿方法没有得到深入研究。当Comnet接收机在信噪比=5dB的情况下进行训练和部署时,“SameSNR”标记表示结果。仿真结果在精度和复杂度方面进行了比较,提出的comnet接收机,fc-dnn接收机。[4]和传统的沟通方式[10].

仿真的系统配置类似于[4]详情如下。该OFDM系统包含64个子载波,16个CP样本,每个帧包含一个导频OFDM符号和一个数据OFDM符号。64-QAM的映射采用长期进化(LTE)标准.在2.6GHz的情况下,该信道是C1方案NLOS情况下的胜利者II信道。在线性情况下,Comnet接收机采用FC-SD,而非线性情况则采用BiLSTM-SD.

在随后的讨论中,我们采用了以下简洁的公约:

Comnet-BiLSTM:提出的基于BiLSTM的Comnet体系结构-检测ZF_RefineNet

Comnet-FC:提出的基于FC-检测ZF_RefineNet的Comnet体系结构

FC-DNN:FC-DNN[4],但修改后,输出层中的神经元数目从16个变为48个,使其适合于64-qam。

LMMSE-MMSE:传统的LMMSE CE与最小均方误差(MMSE)SD

Y/H_true:商数yD 和真频域信道h ,可以实现线性情况下的最大似然解。

A.CE子网
使用Comnet接收机对抗FC-DNN的一个好处是能够获得精确的CSI,这对于下行传输中的信道分析和CSI反馈非常有用。图4给出了Comnet CE子网和LMMSE方法在线性和CP去除情况下的MSE性能。与传统的LMMSE CE相比,CE子网可以更好地纠正CP去除带来的影响。这是由于LS_RefineNet的培训过程从初始化值修改了网络乘性权重,W~LMMSE ,通过使用ADAM优化器最小化通道MSE来实现适当的值。

Fig. 4. - MSE curves of ComNet and traditional methods under linear case and CP removal case.
图4.
Comnet和传统方法在线性情况和CP去除情况下的MSE曲线。

显示所有

B.SD子网
1)线性情况:
图5比较了在线性情况下Comnet-FC和现有方法的误码率曲线,其中考虑了基本的OFDM系统不受非线性影响。从图上看,与FC-DNN和LMMSE-MMSE相比,所提出的Comnet接收机的误码率最接近理想界Y/H_TRUE。Comnet接收机达到误码率=10所需的信噪比−3比FC-DNN和LMMSE-MMSE好1dB.但在Comnet接收机与理想界之间也有1dB的间隙。仿真结果表明,在较长的时延扩展下,Comnet接收机的性能明显优于FC-DNN.

Fig. 5. - BER curves of ComNet and competing methods under linear case.
图5.
在线性情况下Comnet的Ber曲线和竞争方法。

显示所有

模型驱动的方法–comnet-fc接收机,与fc-dnn的数据驱动方法相比,只有八分之一的参数。[4]。此外,Comnet-FC接收机仅需200个历元即可收敛,而FC-DNN则需要约200个历元才能达到相同的误码率水平。结果表明,模型驱动DL方法收敛速度快,参数要求最小.

2)清除CP:
在OFDM系统中引入了CP,以减少多径信道引起的符号间干扰(ISI),降低了传输效率,增加了能量消耗。图6(A)当省略CP时,比较Comnet-BiLSTM与其他方法的误码率性能。在这种情况下,传统的LMMSE-MMSE方法在信噪比为20 dB时趋于饱和,而基于DL的方法(包括FC-DNN和Comnet-BiLSTM)在解决ISI时性能更好。特别是当信噪比大于25 dB时,Comnet-BiLSTM的FC-DNN误码率约为50%,这表明在无CP的OFDM系统中,Comnet-BiLSTM比其他方法具有更准确的恢复发射符号的能力。这种能力得益于BiLSTM递归神经网络,该网络旨在利用序列数据的ISI的内部关系。

Fig. 6. - BER curves of ComNet and competing methods under nonlinear cases: (a) CP removal case marked as “_CP”, and (b) clipping case denoted as “_CR”.
图6.
非线性情形下Comnet和竞争方法的BER曲线:(A)Cp去除例标记为“_CP”,(B)裁剪案例表示为“_CR”。

显示所有

3)剪裁:
Ofdm最有害的特性之一是高峰值/平均功率比(Papr)。[10]。降低峰均比的一种常用方法是剪裁操作,它适用于时域传输信号,如[4]同时也会引起信号的非线性失真。图6(B)给出了Comnet-BiLSTM的误码率曲线和具有非线性失真的竞争方法,裁剪比为1.6。从图中,Comnet-BiLSTM获得了所有方法中最低的误码率.

C.业绩分析
1)信噪比不匹配的鲁棒性:
上述结果是通过在信噪比=40 dB下离线训练Comnet接收机,同时在任意信噪比下在线部署的方法得到的,这是信噪比不匹配的结果,而“SameSNR”标记则是图4–6表示信噪比匹配结果。信噪比失配与匹配结果的差异表明,当信噪比=5dB时,信噪比失配导致MSE损失约为3dB。然而,信噪比不匹配会导致较小的误码率性能损失,这表明Comnet接收机在恢复二进制码元时对信噪比不匹配具有一定的鲁棒性。

2)应用程序的复杂性:
表一比较了接收机的复杂性,包括浮点相乘(FLOP)的数量、内存使用量、计算强度和完成一个OFDM符号的前向传递所需的时间消耗。为了在同一时间段内获得比FC-DNN更好的误码率性能,Comnet-BiLSTM需要比具有大约四分之一内存的FC-DNN多两次失败,而Comnet-FC只需要37万次触发器和1.22 MBytes内存。与传统方法相比,随着信道状态的变化,Comnet接收机的参数得到了确定,因此与LMMSE-MMSE方法相比,Comnet-FC算法比LMMSE-MMSE算法消耗更少的跳频,而LMMSE信道估计的加权矩阵则随着信道状态的变化而重新计算。

第四节。结语
在本文中,我们证明了所提出的Comnet接收机结构在具有线性和非线性失真的OFDM系统中恢复发送数据的好处。尽管Comnet中粗糙到精细的想法是直观的,但它对其含义提供了更深刻的见解。从通信的角度来看,DL神经网络中的非线性激活函数将非线性引入到SD模块中,构成非线性信号检测器。从模型驱动DL的角度出发,在通信智能的辅助下,可以手工创建有用的新特征。此外,这些新的特征可以加速训练过程,从而提高部署效率。在Comnet接收机中将DL与专家知识相结合的思想,为模型驱动DLS在无线通信物理层中的应用提供了新的思路。

深度学习在OFDM系统中的信道估计和信号检测中具有强大的能力。 在OFDM系统中,信道估计和信号检测是关键的环节。传统的方法往往需要通过数学建模和算法设计来实现,但由于信号传播特性的复杂性和非线性,这些方法往往难以处理海量数据和高维度问题。 而深度学习则通过构建深层神经网络来学习信道估计和信号检测的模式和特征。深度学习的神经网络具有强大的拟合能力和自适应性,能够从大量数据中自动学习到信道和信号的复杂模式,有效提取特征,并进行高效的估计和检测。 在信道估计方面,深度学习可以通过训练神经网络来实现对信道的建模和估计。通过输入接收到的OFDM信号和相关参数,神经网络可以通过学习整个OFDM信道的非线性特性,准确地估计出信道的状态信息,为后续信号检测提供准确的输入。 在信号检测方面,深度学习可以通过训练神经网络来实现信号的自动检测和解调。通过输入接收到的OFDM信号,神经网络可以自动学习信号的模式和特征,对信号进行准确的检测和解调,大大提高了系统的检测性能和鲁棒性。 总结而言,深度学习在OFDM系统中的信道估计和信号检测中具有强大的能力。它通过构建深层神经网络来学习信道和信号的模式和特征,实现了对复杂场景下的信道和信号的准确估计和检测,为OFDM系统的性能提升提供了一种有效的解决方案。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值