摘要:
在本文中,我们提出了一种模型驱动的深度学习(DL)方法,将DL与专家知识相结合,以取代现有的正交频分复用接收机在无线通信中的应用。与数据驱动的全连通深度神经网络(FC-DNN)方法不同,我们采用逐块的信号处理方法,将接收机分为信道估计子网和信号检测子网。每个子网由一个DNN构造,并使用现有的简单和传统的解决方案作为初始化。与线性最小均方误差法相比,模型驱动DL接收机具有更高的信道估计精度,并且与现有方法和FC-DNN相比,具有更高的数据恢复精度。仿真结果进一步验证了该方法在信噪比方面的鲁棒性,并在计算复杂度和内存利用率方面优于FC-DNN方法。
第一节导言
深入学习在计算机视觉和自然语言处理等领域取得了巨大的成功,并被考虑应用于无线通信领域。本文讨论了DL在物理层中的潜在应用。[1], [2],和[3]。中的数据驱动DL方法。[4]采用完全连接的深度神经网络(FC-DNN)代替正交频分复用(OFDM)接收机的所有模块.上述文献对传统的OFDM接收机提出了挑战,并将接收机视为黑匣子。但是,它并没有利用专家的知识。1在无线通信中,这反过来又使基于FC-DNN的接收机无法解释和不可预测.此外,数据驱动的方法依靠大量的数据训练大量的参数,因此收敛速度慢,计算复杂度高。
为了解决上述问题,可以使用模型驱动的DL方法.中的一个通用模型驱动DL框架。[5]能够克服大量训练数据的巨大需求。此外,模型驱动的DL网络可以利用领域知识清晰地解释特殊设计的模型族,从而促进性能的进一步提高。在无线通信领域,收发器中的所有模块都得到了严格的开发,从而使现有的算法成为模型驱动DL方法中模型族的基础。在无线通信中引入专家知识形成模型驱动DL解决方案的优越性已在无线互感器网络(Rtn)的实例中得到了证明。[1],信道状态信息(Csi)辅助mimo通信。[6]和PAPR减少网络(PRNet)[7]。用于物理层通信的模型驱动dl的全面概述可在[8].
在本文中,我们提出了一种模型驱动的dl结构,称为comnet,以取代传统的fc-dnn ofdm接收机。[4],它将DL和无线通信的专家知识结合起来。建议中的comnet接收机使用dl来简化现有的接收机模型,如信道估计(CE)模块和信号检测(Sd)模块,而不是用整个dl架构替换接收机,然后集成通信信息,如rtn。[1],csi辅助mimo通信[6]和PRNet[7]。与传统的lmmse-mmse方法和fc-dnn方法相比,该模型驱动dl方法具有更好的性能。[4]与fc-dnn ofdm接收机相比,具有较快的收敛速度和较少的参数。[4].
第二节 comnet
这一部分介绍了用于OFDM系统的Comnet接收机。基于dl的子网(包括ce和sd子网)的体系结构和细节将在第二A节。在……里面第二节B阐述了网络权值的初始化、代价函数和优化器的选择以及超参数的配置。
A.Comnet架构
在OFDM系统中,发送的信号由发送的数据向量组成,xD ,以及飞行员符号向量,xD ,这是接收者所知道的。相应地,接收到的信号包括接收到的数据向量,yD ,以及接收到的导频符号向量,yD 。传统的ofdm接收机恢复对发送的二进制数据的估计。b^ 给定频域信号,yD , yD ,和xD 通过CE,SD和正交幅度调制(QAM)解调顺序。
图1说明了Comnet接收机的体系结构。Comnet接收机的输入和输出与传统的OFDM接收机相似,而Comnet接收机采用两个级联DL子网代替传统的OFDM接收机。而不是使用直接的fc-dnn,如[4]在所提出的Comnet接收机中,CE和SD子网采用传统的通信方案作为初始化,并应用DL网络对粗输入进行细化。Comnet接收机还充分利用了传统方法,并将它们连接起来,形成一个相对健壮的恢复,以适应各种情况。
Fig. 1. - ComNet receiver architecture. The two subnets use traditional communication solutions as initializations, and apply DL networks to refine the coarse inputs. The dotted short-path provides a relatively robust candidate of the binary symbols recovery.
图1.
Comnet接收机体系结构。这两个子网使用传统的通信解决方案作为初始化,并应用DL网络对粗输入进行细化。虚线短路径提供了二进制符号恢复的相对健壮的候选。
显示所有
图2显示CE子网。它的输入是最小二乘(LS)CE,由
h^LS(k)=yP(k)xP(k),(1)
视图源Right-click on figure for MathML and additional features.哪里xP(k) 和yP(k) 中的导频符号和相应的接收符号。k -第二副载波。然后h^LS 被LS_RefineNet用于生成精确的CE。h^ ,其中LS_RefineNet是一个单层DNN。它的输入是一个128维实值信号向量,它由h^LS 。下一层的神经元数为128,这些神经元没有激活函数,即是一个线性信道估计器。
Fig. 2. - CE subnet. A subnet type initialized by LS CE. Then the real-valued initialization is refined by LS_RefineNet.
图2.
行政长官子网由LS CE初始化的子网类型。然后用LS_RefineNet对实值初始化进行细化.
显示所有
在sd子网中,输入只是发送符号的零强迫(Zf)sd,由
xZF(k)=yD(k)h(k).(2)
视图源Right-click on figure for MathML and additional features.这个x^ZF 被ZF_RefineNet用于预测8个连续子载波上8个符号的二进制数据。对于64个子载波的OFDM系统,需要8个独立的SD子网。总之,ZF_RefineNet使用x^ZF , h^ ,和yD 以获得更准确的传输数据估计。根据对接收机复杂度和数据恢复精度的不同要求,我们提出了两种不同形式的ZF_RefineNet。
FC-SD每层有120个神经元和48个神经元组成的两层FC-DNN。的实部和虚部的连接。x^ZF 。隐藏层的激活函数使用relu函数,fRe(a)=马克斯(0,a) ,而输出层是逻辑Sigmoid函数,fSi(a)=11+e−a .
双向短时记忆(BiLSTM)-SD涉及一个三层64时间步长的bilstm网络。[9]每个层有20个、10个和6个隐藏单元,然后是一个具有48个神经元的单层fc-dnn,如图3。考虑到zf sd的性能退化,bilstm-sd的输入集成。yD 和h^ 也是。输出层的激活函数是逻辑乙状结肠函数。
Fig. 3. - Detection subnet with BiLSTM-Detection as ZF_RefineNet. A subnet type initialized by ZF solution, in which ZF_RefineNet adopts BiLSTM-Detection with a FC-DNN layer.
图3.
使用BiLSTM的检测子网-检测为ZF_RefineNet。ZF_RefineNet通过ZF解决方案初始化的子网类型,其中ZF_RefineNet采用BiLSTM-检测和FC-DNN层.
显示所有
上述48个输出对应于从8个连续子载波中估计的48比特,每个符号为64-QAM,每个子载波为6比特。由于逻辑Sigmoid函数将输入映射到间隔[0,1],如果输出大于0.5,则接收到的二进制符号为“1”,否则为“0”。然而,除最后一层外,每一层的层数和神经元层数取决于经验试验。
B.培训规格
为了加快训练过程,考虑了网络权值的初始化。CE子网由实值线性最小均方误差(Lmmse)ce权矩阵初始化。W~LMMSE 从…
hLMMSE=WLMMSEh~LS,(3)
视图源Right-click on figure for MathML and additional features.哪里
W~LMMSE=[Re{WLMMSE}Im{WLMMSE}−Im{WLMMSE}Re{WLMMSE}].(4)
视图源Right-click on figure for MathML and additional features. h~LMMSE 和h~LS LMMSE CE的实部和虚部的连接h^LMMSE 和LS CEh^LS 分别。特别是LMMSE CE权重矩阵,W^LMMSE ,采用[10]。中的方法初始化了SD子网fc层中的乘法权值。[11].
初始化后,dl网络通过最小化b^ 和原始传输二进制符号b 若要调整网络参数,请执行以下操作。在下一节中,训练数据来自于系统配置下的仿真。我们采用均方误差代价函数,如[4]和自适应矩估计(ADAM)优化器[12]两个子网。这两个子网按顺序在TensorFlow中进行训练,其中CE子网被训练2,000个历元,然后固定,然后为SD子网训练5,000个历元。端到端的比较表明,序贯训练可以保证每个块的最优性,在网络参数要求较少的情况下,可以加快训练过程。每个时代使用50个小批次,总批次大小为1,000.将学习速率设为阶梯函数,实现初值为0.001,CE子网每1,000个历元减少10倍,SD子网每2,000个历元减少5倍。
第三节。数值结果
模拟在三种情况下进行,如[4]、线性、循环前缀(CP)删除和裁剪,它们对应于数字中没有后缀、“_CP”后缀和“_CR”后缀。由于本文的主要贡献在于提出了一种新的模型驱动的OFDM接收机结构,而不是解决非线性问题,因此传统的非线性补偿方法没有得到深入研究。当Comnet接收机在信噪比=5dB的情况下进行训练和部署时,“SameSNR”标记表示结果。仿真结果在精度和复杂度方面进行了比较,提出的comnet接收机,fc-dnn接收机。[4]和传统的沟通方式[10].
仿真的系统配置类似于[4]详情如下。该OFDM系统包含64个子载波,16个CP样本,每个帧包含一个导频OFDM符号和一个数据OFDM符号。64-QAM的映射采用长期进化(LTE)标准.在2.6GHz的情况下,该信道是C1方案NLOS情况下的胜利者II信道。在线性情况下,Comnet接收机采用FC-SD,而非线性情况则采用BiLSTM-SD.
在随后的讨论中,我们采用了以下简洁的公约:
Comnet-BiLSTM:提出的基于BiLSTM的Comnet体系结构-检测ZF_RefineNet
Comnet-FC:提出的基于FC-检测ZF_RefineNet的Comnet体系结构
FC-DNN:FC-DNN[4],但修改后,输出层中的神经元数目从16个变为48个,使其适合于64-qam。
LMMSE-MMSE:传统的LMMSE CE与最小均方误差(MMSE)SD
Y/H_true:商数yD 和真频域信道h ,可以实现线性情况下的最大似然解。
A.CE子网
使用Comnet接收机对抗FC-DNN的一个好处是能够获得精确的CSI,这对于下行传输中的信道分析和CSI反馈非常有用。图4给出了Comnet CE子网和LMMSE方法在线性和CP去除情况下的MSE性能。与传统的LMMSE CE相比,CE子网可以更好地纠正CP去除带来的影响。这是由于LS_RefineNet的培训过程从初始化值修改了网络乘性权重,W~LMMSE ,通过使用ADAM优化器最小化通道MSE来实现适当的值。
Fig. 4. - MSE curves of ComNet and traditional methods under linear case and CP removal case.
图4.
Comnet和传统方法在线性情况和CP去除情况下的MSE曲线。
显示所有
B.SD子网
1)线性情况:
图5比较了在线性情况下Comnet-FC和现有方法的误码率曲线,其中考虑了基本的OFDM系统不受非线性影响。从图上看,与FC-DNN和LMMSE-MMSE相比,所提出的Comnet接收机的误码率最接近理想界Y/H_TRUE。Comnet接收机达到误码率=10所需的信噪比−3比FC-DNN和LMMSE-MMSE好1dB.但在Comnet接收机与理想界之间也有1dB的间隙。仿真结果表明,在较长的时延扩展下,Comnet接收机的性能明显优于FC-DNN.
Fig. 5. - BER curves of ComNet and competing methods under linear case.
图5.
在线性情况下Comnet的Ber曲线和竞争方法。
显示所有
模型驱动的方法–comnet-fc接收机,与fc-dnn的数据驱动方法相比,只有八分之一的参数。[4]。此外,Comnet-FC接收机仅需200个历元即可收敛,而FC-DNN则需要约200个历元才能达到相同的误码率水平。结果表明,模型驱动DL方法收敛速度快,参数要求最小.
2)清除CP:
在OFDM系统中引入了CP,以减少多径信道引起的符号间干扰(ISI),降低了传输效率,增加了能量消耗。图6(A)当省略CP时,比较Comnet-BiLSTM与其他方法的误码率性能。在这种情况下,传统的LMMSE-MMSE方法在信噪比为20 dB时趋于饱和,而基于DL的方法(包括FC-DNN和Comnet-BiLSTM)在解决ISI时性能更好。特别是当信噪比大于25 dB时,Comnet-BiLSTM的FC-DNN误码率约为50%,这表明在无CP的OFDM系统中,Comnet-BiLSTM比其他方法具有更准确的恢复发射符号的能力。这种能力得益于BiLSTM递归神经网络,该网络旨在利用序列数据的ISI的内部关系。
Fig. 6. - BER curves of ComNet and competing methods under nonlinear cases: (a) CP removal case marked as “_CP”, and (b) clipping case denoted as “_CR”.
图6.
非线性情形下Comnet和竞争方法的BER曲线:(A)Cp去除例标记为“_CP”,(B)裁剪案例表示为“_CR”。
显示所有
3)剪裁:
Ofdm最有害的特性之一是高峰值/平均功率比(Papr)。[10]。降低峰均比的一种常用方法是剪裁操作,它适用于时域传输信号,如[4]同时也会引起信号的非线性失真。图6(B)给出了Comnet-BiLSTM的误码率曲线和具有非线性失真的竞争方法,裁剪比为1.6。从图中,Comnet-BiLSTM获得了所有方法中最低的误码率.
C.业绩分析
1)信噪比不匹配的鲁棒性:
上述结果是通过在信噪比=40 dB下离线训练Comnet接收机,同时在任意信噪比下在线部署的方法得到的,这是信噪比不匹配的结果,而“SameSNR”标记则是图4–6表示信噪比匹配结果。信噪比失配与匹配结果的差异表明,当信噪比=5dB时,信噪比失配导致MSE损失约为3dB。然而,信噪比不匹配会导致较小的误码率性能损失,这表明Comnet接收机在恢复二进制码元时对信噪比不匹配具有一定的鲁棒性。
2)应用程序的复杂性:
表一比较了接收机的复杂性,包括浮点相乘(FLOP)的数量、内存使用量、计算强度和完成一个OFDM符号的前向传递所需的时间消耗。为了在同一时间段内获得比FC-DNN更好的误码率性能,Comnet-BiLSTM需要比具有大约四分之一内存的FC-DNN多两次失败,而Comnet-FC只需要37万次触发器和1.22 MBytes内存。与传统方法相比,随着信道状态的变化,Comnet接收机的参数得到了确定,因此与LMMSE-MMSE方法相比,Comnet-FC算法比LMMSE-MMSE算法消耗更少的跳频,而LMMSE信道估计的加权矩阵则随着信道状态的变化而重新计算。
第四节。结语
在本文中,我们证明了所提出的Comnet接收机结构在具有线性和非线性失真的OFDM系统中恢复发送数据的好处。尽管Comnet中粗糙到精细的想法是直观的,但它对其含义提供了更深刻的见解。从通信的角度来看,DL神经网络中的非线性激活函数将非线性引入到SD模块中,构成非线性信号检测器。从模型驱动DL的角度出发,在通信智能的辅助下,可以手工创建有用的新特征。此外,这些新的特征可以加速训练过程,从而提高部署效率。在Comnet接收机中将DL与专家知识相结合的思想,为模型驱动DLS在无线通信物理层中的应用提供了新的思路。