【文献阅读】 Deep Learning-Based Channel Estimation in OFDM Systems

2019 IEEE

https://arxiv.org/abs/1810.05893
代码:https://gitee.com/joannne/ChannelNet


Pilot Pattern Design for Deep Learning-Based Channel Estimation in OFDM Systems,2020
2020 https://ieeexplore.ieee.org/document/9166541
摘要:
本文提出了一种在正交频分复用(OFDM)系统中基于深度学习(DL)的信道估计(ChannelNet)的下行导频设计方案。具体而言,在该方案中,采用了具体的自动编码器(ConcreteAE)特征选择方法来寻找信息最丰富的导频传输位置。该自动编码器由一个作为编码器的具体层和一个作为解码器的多层感知器(MLP)组成。在训练期间,具体层选择信息最丰富的导频位置,解码器重构信道的近似估计。最后,ChannelNet接受了关于ConcreteAE输出的培训,目的是重建理想的信道响应。估计误差结果表明,该方法优于已有的具有均匀分布导频模式的ChannelNet,其性能与最小均方误差(MMSE)相当。


二、背景
三、ChannelNet
四、模拟结果
五.结语

摘要:
本文提出了一种用于通信系统信道估计的深度学习算法。我们将快速衰落通信信道的时频响应考虑为二维图像.目的是使用导频位置上的一些已知值来查找信道响应的未知值。为此,提出了一种基于深度图像处理技术、图像超分辨率技术(SR)和图像恢复技术(IR)的通用流水线。该方案将导频值作为一幅低分辨率的图像,并利用带去噪红外网络的SR网络对信道进行估计。并给出了该流水线的实现方法。估计误差表明,在充分了解信道统计量的情况下,该算法与最小均方误差(MMSE)相当,优于线性最小均方误差(MMSE)。结果表明,该流水线可以有效地应用于信道估计。

一.导言

在此基础上,本文提出了一种基于DL的OFDM系统信道估计框架.该方法将信道响应的时频网格建模为仅在导频位置已知的二维图像。该信道网格由多个导频组成,被认为是一幅低分辨率(LR)图像,估计的信道是一幅高分辨率(HR)图像。提出了一种估计信道网格的两相方法.首先,采用图像超分辨率(SR)算法提高LR输入的分辨率.然后,采用图像复原(IR)方法去除噪声影响。对于SR和IR网络,我们使用了最近发展起来的两种基于cnn的(卷积神经网络)算法srcn。[10]和DnCNN[11]分别。本函所作贡献概述如下:

将信道时频响应建模为图像.

将导频位置上的信道响应视为LR图像,将估计的信道响应作为建议的HR图像。

利用基于DL的图像超分辨率和图像去噪技术对信道进行估计.

信的其余部分按以下方式排列。第二节简要介绍了传统的信道估计方法。第三节给出了提出的DL基信道估计器的结构。在……里面第四节,最后给出了仿真结果。第五节信的结尾。

第二节 背景

A.信道估计

在OFDM系统中,对于k 时隙和i 第四副载波,输入-输出关系表示为:
Yi,k=Hi,kXi,k+Zi,k.(1)

考虑OFDM子帧的大小NS×ND ,时隙索引k 介于[0,ND−1] 和子载波索引的范围。i 是[0,NS−1] 。在……里面(1), Yi,k , Xi,k ,和Zi,k 分别是接收信号、发射OFDM符号和高斯白噪声。Hi,k 是(i,k) 元素H∈CNS×ND . H 表示所有子载波和时隙的信道的时频响应。

为了估计信道,特别是在衰落信道中,时域响应表示为H={h[1],h[2],…,h[ND]} ,每个h[k] 的频道频率响应。k 时隙。

LS方法估计导频位置的信道。如果我们把LS估计的信道看作对角矩阵的话。HLSp∈CNP×NP , HLSp 可以通过解决:
H^LSp=argminHp∥yp−Hpxp∥22,(2)
视图源Right-click on figure for MathML and additional features.哪里||.||2 是ℓ2 距离和H^LSp∈CNP×NP 是估计的对角线矩阵。xp 包含已知的导频值和yp 相应的观察结果。优化(2)结果hLSp=诊断(HLSp)=yp/xp 。要在导频位置以外的点处求出信道值,必须采用二维插值方法。

一个比LS更好的选择是mmse估计,它是通过在导频符号位置上乘以一个滤波矩阵得到的。AMMSE∈CNL×NP [12]:

hMMSEd=AMMSEhLSp,(3)

其中 h^MMSEd∈CNL×1 (NL=NS×ND )是信道响应的矢量MMSE估计。H 分帧d 。要找到滤波矩阵,均方误差(MSE),

ϵ=E{∥hd−AMMSEh^LSp∥22},(4)

必须尽量减少。最小化(4)引向
AMMSE=Rhdhp(Rhphp+σ2n(xxH)−1)−1,(5)

.其中矩阵Rhdhp=E{hdhHp} 表示所需子帧和导频符号之间的信道相关矩阵以及该矩阵。Rhphp=E{hphHp} 导频符号处的信道相关矩阵。很明显,只有当信道的相关矩阵表示为R ,完全为人所知。

B.超分辨率和图像恢复

针对低分辨率、低噪声的图像,提出了几种高分辨率、低噪声图像的再现方法。图像超分辨率(SR)是一种用于图像分辨率增强的技术.基于DL的算法,特别是在深、全卷积网络中,在从LR图像输入中恢复HR图像的问题上取得了较高的性能。最近,==超分辨率卷积神经网络(Srcn)[10]建议以端到端的方式在LR/HR图像之间进行映射。除了SR技术之外,图像恢复(IR)算法还可以用来消除/减少图像上的噪声效应 。 文献中提出了各种IR模型。例如,在[11]提出了一种基于残差学习和批量归一化的 前馈去噪卷积神经网络 (DnCNN)方案,以加快训练过程。

第三节 ChannelNet

A.频道图像

在本工作中,我们重点研究了一对TX天线和Rx天线之间的一条链路,即我们有单输入单输出(SISO)通信链路。对于此链路,信道时频响应矩阵。H (指尺寸)NS×ND )在发射机和接收器之间,由复数组成,可以表示为二维图像(一个2D图像表示实值,另一个图像表示虚值)。采样信道时频网格的归一化实/虚二维图像实例ND=14 时隙和NS=72 子载波(基于长期演进(Lte)标准)显示在图1.

Fig. 1. - An example of normalized real/imaginary 2D-image for a sample channel time-frequency grid.
图1.
采样信道时频网格的归一化实/虚二维图像示例。

显示所有

B.网络结构

基于dl的信道估计提议的管道概述,称为channelnet,在图2。目的是利用发射导频估计信道的全时频.类似于LTE标准,点式导频装置已被用于导频传输.
图2.
提出了一种基于DL的信道估计流水线。

在导频位置ˆhLSp处的信道的估计值(这可能是有噪声的)被认为是信道图像的LR和有噪声的版本。为了获得完整的信道图像,提出了两阶段训练方法:

  • 在第一阶段,我们实现了一个SR网络。h^LSp 作为矢量化的低分辨率输入图像(一次是实部,一次是虚部),估计未知的信道响应H。

  • 第二阶段,消除噪声影响,将一个去噪IR网络与SR网络级联。

为了SR和IR,我们用SRCNN [10]和DnCNN [11]分别。由于页面的限制,我们不能用图片显示它们的结构。但在很高的层次上,SRCNN首先采用插值方法求出高分辨率图像(信道)的近似值,然后利用三层卷积网络提高分辨率。第一个卷积层使用64个大小的滤波器。9×9 第二层使用32个大小的过滤器。1×1 ,都伴随着relu的激活。最后一层只使用一个大小的过滤器。5×5 重建图像。DnCNN(详见[11])是一个基于剩余学习的网络,由20个卷积层组成.第一层使用64个大小的过滤器。3×3×1 后面跟着一个连体。接下来的18个卷积层中的每一个都使用64个大小的过滤器。3×3×64 然后是批处理-规范化和重新定义。最后一层使用一个3×3×64 过滤以重建输出。

C.培训
让我们将所有网络参数的集合表示为Θ={ΘS,ΘR} ,在那里ΘS 和ΘR 分别表示SR网络和IR网络的参数集。ChannelNet的输入是导频值向量。h^LSp 输出是估计的信道矩阵,表示为H^ :
H=f(Θ;hLSp)=fR(fS(ΘS;h^LSp);ΘR),
哪里fS 和fR 分别是SR函数和IR函数。

网络的总损耗函数是估计的信道响应与实际信道响应之间的均方误差(MSE),计算结果如下:
C=1∥T∥∑hp∈T∥f(Θ;h^LSp)−H∥22,(6)
视哪里T 是所有培训数据的集合,H 是完美的频道。在……里面(6), ∥T∥ 是训练集的大小。

为了简化训练过程,我们采用了两阶段训练算法。
在第一阶段,我们尽量减少SR网络的损失,C1 :
C1=1∥T∥∑hp∈T∥Z−H∥22,(7)
哪里Z=fS(ΘS;h^LSp) 是SR网络的输出。

在第二阶段,我们冻结了SR网络的权值,并通过定义来确定去噪网络的参数。H^=fR(Z;ΘD) 和最小损失函数C2 :
C2=1∥T∥∑hp∈T∥H^−H∥22,(8)

注意,与基于图像的技术类似,网络的最优权重取决于信噪比的值;因此,为了得到一个完整的解决方案,我们必须对每个信噪比值重新训练网络。由于信噪比是连续的,这种方法实际上是不可能实现的。幸运的是,结果是第四节演示了,对于几个信噪比值的训练网络(在我们的例子中只有两个值)仍然可以获得良好的性能。

第四节。模拟结果
在这一部分中,我们对网络进行了训练,并在一定范围内对MSE进行了评估,并将结果与常用的基线算法进行了比较。

我们考虑发射机和接收器上的单一天线。在信道建模和导频传输方面,我们采用了维也纳大学开发的LTE模拟器。[13]。利用GPU后端的Keras和TensorFlow来实现我们提出的方案。对于SR和IR网络,训练率设置为0.001,批量大小为128个,最多500个迭代。培训、测试和验证集分别由32000、4000和4000个通道组成。正如在LTE中一样,在我们的模拟中,每一帧由14个时隙和72个子载波组成。考虑载波频率为2.1GHz的VehicharA(VehA)和SUI5(长延迟扩展模型)的无线信道模型,考虑带宽为1.6MHz,UE(用户设备)速度为50km/h。

为了验证算法的性能,我们将==该方法的信道估计精度与三种最先进的算法(理想最小均方误差估计法、估计最小均方误差法和理想最小均方误差估计法)的估计精度进行了比较。[3]==每帧使用48个导频。估计信道实现与实际信道实现之间的均方误差是性能度量。

文中给出了VehA的计算结果。图3。请注意,理想的MMSE具有最佳的性能,并且给出了可实现MSE的下界,因为信道相关矩阵应该是完全已知的(不存在任何误差),这在实际应用中不是一个有效的假设。估计的MMSE试图根据接收到的信号估计相关矩阵,而理想ALMMSE是理想MMSE的近似对应(但仍然对信道统计量有完全的了解)。

图3.
基于信噪比的VehA信道模型信道估计MSE。

在……里面图3结果表明,在信噪比为12 dB(用深低信噪比表示)时训练的ChannelNet具有与理想MMSE相当的性能,比理想的ALMMSE和估计的MMSE具有更好的性能。此外,可以观察到,在信噪比约为中等的情况下,在信噪比为22 dB(以深高信噪比表示)时训练的网络的性能将优于深低信噪比。

因此,我们将信噪比范围划分为两个区域。在信噪比较低的情况下,利用深低信噪比网络对信道进行估计,在阈值以上采用深高信噪比网络。可以观察到,当信噪比大于23 dB时,深高信噪比的性能将再次失效,另一种网络必须进行训练,但只要信噪比低于20 dB,两种生成的网络就足够了。

与SUI 5模型相关的MSE结果在图4。一般情况下,由于信道复杂度较高,与VehA模型相比,所有方案都表现出较低的性能。更有趣的是,在信噪比为5dB后,我们可以观察到ALMMSE和估计MMSE等方案明显退化,而所提出的深度模型仍然可以发现潜在的统计量并得到可接受的最小均方误差(MSE)。正如我们所期望的那样,理想MMSE具有最好的性能,但它在实际场景中是无法实现的,因为它需要对正确的信道统计信息有充分的了解。

图4.
SUI 5信道模型的信道估计MSE

显示所有

为了证明该算法的性能,在考虑VehA信道模型的情况下,本文给出了在信噪比为20 dB的情况下,不同导频数下的仿真结果。图5。可以看出,在信噪比这个特定值下训练的ChannelNet优于估计的MMSE和理想的ALMMSE方法,它与理想的MMSE相当。

图5.
基于导频数的信道估计的均方误差。

第五节结语
在这封信中,我们提出了ChannelNet,这是我们最初的一种基于DL的通信系统信道估计算法.在该方法中,我们将衰落信道的时频响应考虑为二维图像,并应用SR和IR算法根据导频值求出整个信道状态。结果表明,与MMSE算法相比,ChannelNet的性能具有很强的竞争力。给出了两步网络训练过程,并讨论了如何使用多个ChannelNets对信道进行最佳估计。

这是一份论文,有关信道估计的.里面介绍了LS,MMSE算法,并且有LMMSE和SVD作为对MMSE算法的改进.Y()=DFT(y(n))-N2y(nje (7) n=0,1,…,N-1 Y(k)也可以表示为 Y(k)=x(k)H(k)+/(k)+W() (8) 其中,H(k)是信道的频域响应,I(κ)是多普勒频移带来的载波间干扰(ICI),W(k)是高撕白噪声的傅立 叶变换。 3基于最小均方误差(MMSE)的信道估计算法 31LS信道估计算法简介 IS准则的目标是使(Y-1)(Y-)最小,在频域高斯独立子信道的假定之下,IS估计就可以 简单的表示成除法,得到IS准则的信道估计为: ,=x-Y (9) 最小二乘估计,只需要知道观测方程的观测矩阵X,对于待定的参数h,观测的噪声,以及观测样本Y 的其他统计特性,都不需要其他的先验信息,这就是最小二乘估计最大的优势,也是它得到广泛应用最大 的原因。 32MMSE信道估计算法 假设表示信道估计值,H表示实际值。估计误差为 =H-a (10) 均方误差(MSE)为 P=E{eP}=B{H-}=E(-H)(H-H)"} MMSE准则的目标是使均方误差E(-B)(-H)}最小,其中 E(-H)(-H)"}=E[(-1)(-)} H=gh (12) 其中Q为DF变换矩阵。得到MMSE的估计值为 Humse =QhmMse=QFmse"Y Mmse=rlle"Xxoo+RT(QX X@) (13) MMSE可以实现理想的信道估计,此算法的均方误差和信噪比成反比,如果此种算法需要的统计参数 都是理想的,那么估计出来的性能就会非常的理想。缺点就是此算法非常复杂。 与LS估计相比,MMSE估计算法在信噪比上有10-15dB的增益。可以看到,MMSE估计算法需要对 矩形求逆,当OFDM系统的子信道数目N增大时,矩阵的运算量也就会变得十分巨大。因此,MMSE算法 的最大的缺点就是计算量太大,实现起来对硬件的要求比较高。如何在估计性能的下降不多的前提下,对 MMSE估计算法做适当的简化,是一个关键的研究方向 33对MMSE算法的改进 首先可以简化(Xx)的计算,用E{xx}代替x。于是,有 HH(HH (14) SNR ·1373 这里 SNR=EX()o β=E{X()}·E(1/X(k)}2。 对于给定的信号星座图为定值,当子信道相关矩阵Rm与信噪比SNR已知时,对Rm1(Rm+l) SNR 只计算一次。但是矩阵的运算量还是比较大,由于子信道频响的频谱能量主要集中在低频部分,即主 要集中在前G阶,这里G为信道最大多径时延对应的样值个数。因此,设子信道的自相关矩阵可表 示为Rm=UAU的形式,这样可以显著降低MMSE的计算复杂度。这里U为酉矩阵, A=dlag(2,3,…,2)为由Rm的特征值构成的对角阵。由此可得 MMSE U H (15) 这里△n为 +(B/M1),k=1…,m构成的对角阵,为A的前m个特征值,通常可以取m与 循环前缀的长度一致,相应地矩阵U可化简为N×L阶矩阵 4算法性能分析 仿真基于图2所示道频结构的OFDM系统,信道设定为时变信道,包含了多径和由于终端移动产 生的多普勒频移。具体参数为:载波频率2GHz,采样频率6MHz,子载波数N=1024,无符号间干扰。 本仿真与文献[6中的频域LE加线性插值的信道估计性能比较,同时有一条理想估计曲线作为参考。如 图3、图4所示 10 理想模型 须域线性值估计的线性插值 时域最小均方误差 ●。。。●。。●。o。●c 温 o●。。o鲁。。。●o。 o。●0o。●。。o●。 e●。。●。。。。。。 域 o。●D。。● o● ●●。。。●。。。●。 ●o●o●。O。 10 频域 ENNo/dB 图2仿真系统导频结构 图360km/h时LE插值和MMSE算法性能比较 亞 想模型 域线性值估计的线性插倒 域最小均方误差 10 ENNo/dB 图4120km/h时LE插值和MMSE算法性能比较 ·1374· 以上两图显示,在高信噪比情况下,MMSE算法与LE插值算法性能近似,但在低信噪比时,本文提 出的MMSE改进算法较LE插值算法约有2~3dB的性能提升,更接近于理想曲线。 参考文献 [1] Meng-Han Hsieh, Che-Ho Wei. Channel estimation for OFDM systems based on comb-type pilot arangement in frequency selective fading channels. IEEE Transactions on Consumer Electronics, 1998, 44(1 ): 217-225 [2]Tufvesson F Maseng T Pilot Assisted Channel Estimation for OFDM in Mobile Cellular Systems. Proceedings of iEEE Vehicular Technology Conference, Vol 3. Phoenix(AZ USA), 1997. Piscataway (J, USA): IEEE, 1997. 1639-1643 3] Louis L. Scharf, Statistical Signal Processing, Addison-Wesley, 1991 [4] I. J. van de Beek, O. Edfors, M. Sandell,S. K. Wilson, and P 0. Borjesson, "OFDM channel estimation by singular value decomposition", Proc. Of 46IEEE Veh Tech Conf. Pp. 923-927, April1996 [5] Li Y G, Cimini L J, Sollenberger N R. Robus Channel Estimation for OFDM Systems with Rapid Dispersive Fading Channels [J]. IEEE Transactions on Communications, 1998, 46(7): 902-915 [6] Jae Kyoung Moon, Song In Choi. Performance of channel estimation methods for OFDM systems in a multipath fading channels IEEE Transactions on Consumer Electronics, 2000 46(1): 161-170 7]尹长川.多载波宽带无线通信技术.北京:北京邮电大学出版社,200.7 作者简介 王东,男,1978年生,陕西西安人,解放军西安通信学院讲师,在读硕士,主要研究方向为多载波通信 栾英姿,女,1970年生,江苏盐城人,西安电子科技大学副教授,博士,主要研究领域为宽带无线通信和多载波技术。 1375 一种基于MMSE的OFDM系统信道估计改进算法 旧 WANFANG DATA文献链接 作者: 王东,栾英姿 作者单位: 王东(西安电子科技大学,西安,710071;解放军西安通信学院,西安,710106),栾英姿(西安 电子科技大学,西安,710071) 本文链接http://d.g.wanfangdata.comcn/confereNce6442807.aspx
深度学习在OFDM系统中的信道估计和信号检测中具有强大的能力。 在OFDM系统中,信道估计和信号检测是关键的环节。传统的方法往往需要通过数学建模和算法设计来实现,但由于信号传播特性的复杂性和非线性,这些方法往往难以处理海量数据和高维度问题。 而深度学习则通过构建深层神经网络来学习信道估计和信号检测的模式和特征。深度学习的神经网络具有强大的拟合能力和自适应性,能够从大量数据中自动学习到信道和信号的复杂模式,有效提取特征,并进行高效的估计和检测。 在信道估计方面,深度学习可以通过训练神经网络来实现对信道的建模和估计。通过输入接收到的OFDM信号和相关参数,神经网络可以通过学习整个OFDM信道的非线性特性,准确地估计出信道的状态信息,为后续信号检测提供准确的输入。 在信号检测方面,深度学习可以通过训练神经网络来实现信号的自动检测和解调。通过输入接收到的OFDM信号,神经网络可以自动学习信号的模式和特征,对信号进行准确的检测和解调,大大提高了系统的检测性能和鲁棒性。 总结而言,深度学习在OFDM系统中的信道估计和信号检测中具有强大的能力。它通过构建深层神经网络来学习信道和信号的模式和特征,实现了对复杂场景下的信道和信号的准确估计和检测,为OFDM系统的性能提升提供了一种有效的解决方案。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值