文献学习
文章平均质量分 85
Joanne Sherkay
这个作者很懒,什么都没留下…
展开
-
【文献学习】 2021 Deep-Waveform: A Learned OFDM Receiver Based on Deep Complex Convolutional Networks
https://arxiv.org/abs/1810.07181译文 参考文章深波:一种基于深复卷积网络的学习OFDM接收机:参考文章2代码代码2近年来对无线通信物理层深度学习的研究表明,深度神经元网络在信道编码、调制和参数估计等方面具有良好的性能。然而,目前还不清楚深层神经元网络是否也能学习当前和下一代无线网络的先进波形,并有可能创造出新的波形。在本文中,开发了一种没有明确的离散傅里叶变换(DFT)的深度复数卷积网络(DCCN)作为正交频分复用(OFDM)接收器。与现有的由全连接层和非线性激活原创 2021-11-02 21:02:10 · 2224 阅读 · 2 评论 -
【文献译文】ComNet: combination of deep learning and expert knowledge in OFDM receivers
摘要:在本文中,我们提出了一种模型驱动的深度学习(DL)方法,将DL与专家知识相结合,以取代现有的正交频分复用接收机在无线通信中的应用。与数据驱动的全连通深度神经网络(FC-DNN)方法不同,我们采用逐块的信号处理方法,将接收机分为信道估计子网和信号检测子网。每个子网由一个DNN构造,并使用现有的简单和传统的解决方案作为初始化。与线性最小均方误差法相比,模型驱动DL接收机具有更高的信道估计精度,并且与现有方法和FC-DNN相比,具有更高的数据恢复精度。仿真结果进一步验证了该方法在信噪比方面的鲁棒性,并在计原创 2021-08-08 18:15:50 · 739 阅读 · 1 评论 -
【文献阅读】 Deep Learning-Based Channel Estimation in OFDM Systems
2020 https://ieeexplore.ieee.org/document/9166541https://arxiv.org/abs/1810.05893代码:https://gitee.com/joannne/ChannelNet#摘要:本文提出了一种在正交频分复用(OFDM)系统中基于深度学习(DL)的信道估计(ChannelNet)的下行导频设计方案。具体而言,在该方案中,采用了具体的自动编码器(ConcreteAE)特征选择方法来寻找信息最丰富的导频传输位置。该自动编码器由一个作为编原创 2021-08-07 22:25:21 · 4857 阅读 · 4 评论 -
【文献译文-20】Deep Learning for Joint Channel Estimation and Signal Detection in OFDM Systems
文献背景2020.12 Deep Learning for Joint Channel Estimation and Signal Detection in OFDM Systems:参考文献:信道估计的技术是直接利用别人提出的2020.10《Model-Driven Channel Estimation for OFDM Systems Based on Image Super Resolution Network(基于图像超分辨率网络的OFDM系统模型驱动信道估计)》 自己的创新点仅仅在信号检测原创 2021-06-22 21:49:01 · 515 阅读 · 0 评论 -
【文献译文】OFDM Receiver Using Deep Learning: Redundancy Issues
基于深度学习的OFDM接收机:冗余问题摘要:第一节 导言第二节 系统模型第三节 最小冗余OFDM接收机A CEsubnetB.SDMR-子网2021 ieee会议摘要:在正交频分复用(OFDM)系统中,为了对抗多径衰落引起的码间干扰(ISI)和块间干扰(IBI),通常建议使用长度等于信道顺序的循环前缀(CP)。然而,在某些实际情况下,信道顺序还不完全清楚。为了在一个完整的CP和它的缺失之间找到一个平衡,我们研究了冗余问题,并提出了一个使用深度学习(DL)工具的最小冗余OFDM接收机。这样,与无CP的情原创 2021-06-01 15:51:35 · 901 阅读 · 1 评论 -
文献学习
一、文献目录1、【文献学习】利用DeepLearning实现OFDM信号解调相关文献及源码汇总2、【文献学习】Artificial Intelligence-aided OFDM Receiver:Design and Experimental Results 在FC-DNN和ComNet网络的基础上进行的研究和真实的实现。并针对离线训练的信道模型与实际环境不一致而导致的仿真与(over-the-air)OTA测试之间的性能差异,提出了一种新的在线训练策略SwitchNet接收机。二、原创 2021-03-17 16:11:55 · 382 阅读 · 0 评论