【文献译文】OFDM Receiver Using Deep Learning: Redundancy Issues


2021 ieee会议

摘要:

在正交频分复用(OFDM)系统中,为了对抗多径衰落引起的码间干扰(ISI)和块间干扰(IBI),通常建议使用长度等于信道顺序的循环前缀(CP)。然而,在某些实际情况下,信道顺序还不完全清楚。为了在一个完整的CP和它的缺失之间找到一个平衡,我们研究了冗余问题,并提出了一个使用深度学习(DL)工具的最小冗余OFDM接收机。这样,与无CP的情况相比,我们可以获得更好的接收性能,而且与CP-OFDM相比,我们的频谱利用率也更好。此外,与无CP的情况相比,即使在没有信道指令的情况下,也可以获得更好的性能。仿真结果表明,该技术可以达到较好的误码率水平,并可应用于其它基于DL的接收机中。
M. O. K. Mendonça and P. S. R. Diniz, “OFDM Receiver Using Deep Learning: Redundancy Issues,” 2020 28th European Signal Processing Conference (EUSIPCO), 2021, pp. 1687-1691, doi: 10.23919/Eusipco47968.2020.9287725.Abstract: To combat the inter-symbol interference (ISI) and the inter-block interference (IBI) caused by multi-path fading in orthogonal frequency-division multiplexing (OFDM) systems, it is usually recommended employing a cyclic prefix (CP) with length equal to the channel order. In some practical cases, however, the channel order is not exactly known. Looking for a balance between a full-sized CP and its absence, we investigate the redundancy issues and propose a minimum redundancy OFDM receiver using deep-learning (DL) tools. In this way, we can benefit from an improved reception performance, when compared with CP-free case, and also a better spectrum utilization when compared with the CP-OFDM case. Moreover, compared with the CP-free case, improved performance can be obtained even when the channel order is not available. Simulation results indicate that a good BER level can be achieved and the proposed technique can also be applied in other DL-based receivers.
URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9287725&isnumber=9287310

第一节 导言

在无线通信领域,正交频分复用(OFDM)系统在处理多径衰落时的有效性是众所周知的。以额外带宽为代价,ofdm能够抵抗由发送信号的多个延迟版本引起的符号间干扰(Isi)和块间干扰(Ibi)。[1]。冗余元素数L,也称为循环前缀(Cp),至少应该等于与信道的最大延迟扩展相关的信道顺序。[2]。这样,将物理信道的线性卷积转换为圆形卷积,消除了符号间干扰,简化了接收机。尽管如此,如果频谱效率是一个问题,去cp的ofdm系统是一个很有吸引力的选择。[3]只要为收发信机提供适当的设计。众所周知,在零填充(Zp)ofdm的情况下,通过有效的信道均衡[4],[5]可以将所需的冗余降低到L/2。此解决方案要求最小冗余量,允许零强制(Zf)均衡[6], [7]。对于冗余度不足的CP-OFDM,通常不讨论ZF解决方案,但现有的学习方法可以提高性能,简化接收。

由于深度学习(Dl)在许多领域取得了巨大的成功,近年来在无线通信中采用了深度神经网络(Dnn)的方法。[3], [8][9][10]–[11]已经有人提出了。选择深度模型代表了一种信念,即我们想要学习的系统应该包含几个更简单的系统的组成。[12]。事实上,ofdm系统的接收是由几个块组成的,这些块可以用dnn建模。[8]。然而,利用无线通信中的专家知识可以获得更多的控制,例如,[3], [9]中将单个dnn分解为两个。在本文中,我们提出了一种基于双块DL的OFDM接收,减少了冗余,即我们的工作给出了如何在无CP和CP-OFDM之间执行一种解决方案的答案。结果表明,我们可以从改善接收性能以及获得更好的频谱利用率中获益。

这篇论文组织如下。中定义了所考虑的系统模型。第二节. 第三节介绍了一种具有最小冗余度的OFDM系统的接收方案。第四节通过仿真结果验证了该方法的有效性。第五节包括一些结束语。
//==[3]J. Zhang, H. He, C. K. Wen, S. Jin and G. Y. Li, “Deep learning based on orthogonal approximate message passing for CP-free OFDM”, IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 8414-8418, 2019.

[9] X. Gao, S. Jin, C. K. Wen and G. Y. Li, “Comnet: Combination of deep learning and expert knowledge in OFDM receivers”,==

第二节 系统模型

考虑的ofdm系统在图1。在发送端,输入二进制数据b=[b]1,b2、…,bB]T都是生成的。输入符号是从M-正交调幅(M)并转换为并行数据流。x∈ℂN×1。然后利用N点逆快速傅里叶变换(IFFT)将信号从频域x转换到时域x。增加这个K-长度CP,从而产生的ofdm信号u:
公式1
The N-point inverse fast Fourier transform (IFFT) is then employed to convert the signal from the frequency domain x to the time domain x. The K-length CP is added, resulting in the OFDM signal

图1 基本OFDM系统框图。
发射机与接收机之间的信道模型具有脉冲响应。h=[h(0)h(1)…]H(L)]T。在z-区域,伪循环信道矩阵是

The channel model between transmitter and receiver has the impulse response h = [h(0) h(1) …h(L)]T. In the z-domain, the pseudo-circulant channel matrix is
公式3 介绍了冲激响应其中HISI和H伊比表示无线信道产生的ISI和IBI效应 ?。[2]

[2]P. S. R. Diniz, W. A. Martins and M. V. S. Lima, Block Transceivers: OFDM and Beyond, USA:Morgan & Claypool Publishers, 2012.

将接收到的信号在时域表示为
公式4

接收端
我们假设在OFDM帧的传输过程中,信道基本保持不变。为了简单起见,如[3], [9]一样,OFDM帧由一个导频和一个数据OFDM符号组成。如图2所示,每个OFDM符号都受到IBI效应的影响。遵循下面的示例图2,即在k点的接收到的数据信号( the received data signal at instant k is)为yD(k)
---------------------------------------------------------------------公式5
uD和uP分别是数据符号和导频OFDM符号。
在这里插入图片描述

[3] J. Zhang, H. He, C. K. Wen, S. Jin, and G. Y. Li, “Deep learning basedon orthogonal approximate message passing for CP-free OFDM,” IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 8414–8418, 2019, Brighton.
[9] X. Gao, S. Jin, C. K. Wen, and G. Y. Li, “Comnet: Combination
of deep learning and expert knowledge in OFDM receivers,” IEEE
Communications Letters, vol. 22, no. 12, pp. 2627–2630, Dec 2018.

如图1,首先是导频信号uP使用S子载波获取信道状态信息(CSI).接收器通过乘法删除CP。y(k)RCP=[0N×KIN]∈CN×S.
然后采用最小二乘(LS)方法进行信道估计。
公式7
为了获得csi,我们还可以使用线性最小均方误差(Lmmse)信道估计。
公式8
关于lmmse此解决方案有一些实际的实现形式,请参阅[13].
//[13]H. He, C.-K Wen, S. Jin and G. Y. Li, “Model-driven deep learning for MIMO detection”, IEEE Transactions on Signal Processing, vol. 68, pp. 1702-1715, Feb 2020.

然后,数据信号uD发送,并使用先前获得的信道估计来执行频域均衡(Fde):
公式9
等价于K≥L的ZF均衡
在这里插入图片描述
//简化接受机

第三节 最小冗余OFDM接收机

让我们定义最小冗余(MR)OFDM接收机,允许ZF解决方案的总冗余长度等于L/2.建议的mrofdm接收机由两个子网组成,如下所示图3.

第一个子网与[3]、[9]中使用的相同]。信道估计器(CE)子网负责获得改进的信道估计。第二种是对接收到的符号进行检测,称为符号检测器最小冗余(symbol detector minimum redundancy ,SDMR)子网。

A CEsubnet

CE子网是在[9]中首次提出的。。在方程(8)的启发下,CE子网利用一个两层神经网络获得了一个改进的信道估计[9],如图4所示。方程(7)中描述的LS估计是在一个实值块中转换的:
hls
并将其作为CE子网的输入。此外,CE子网由实值lmmse权矩阵初始化。

B.SDMR-子网

所提出的符号检测子网络是一个具有三个隐藏层的dnn,如图5。隐藏层以双曲线切线为激活函数。在此工作中,SDMR子网在输出层使用线性激活函数。不像[8], [9]在比特估计方面,SDMR子网输出层被选择为线性激活函数,因为它为符号提供了更好的估计。
The hidden layers have as activation function== the hyperbolic tangent==. In this work, the SDMR subnet utilizes a linear activation function at the output layer. Unlike [8], [9] works concerning bits estimation, the SDMR subnet output layer has been chosen as a linear activation function since it provides a better estimation for the symbols.
//8.Power of deep learning for channel estimation and signal detection in OFDM systems", IEEE Wireless Communications Letters, Feb 2018.

  1. “Comnet: Combination of deep learning and expert knowledge in OFDM receivers”, IEEE Communications Letters, Dec 2018.
    都是隐层的激励函数常采用ReLU函数,最后一层采用 Sigmod激励函数。【8】fc-dnn:五层,【9】FC-SD两层FC-DNN
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值