线性代数 线性相关与线性表示的理解
https://www.zhihu.com/question/39326459/answer/452801233
首先,向量是仅有一行或者一列的特殊矩阵,我们将其每一个元素视为一个维度,n维向量就存在于n维空间内。
我们可以把各个维度视为描述某个向量的各个方面,那么某些向量之间就有可能有一些替代关系。这个向量,像知乎答主的例子,可以被视为一个人的各个能力方面。
比如某个维度,两个向量在这个维度上的值分别为2和4,那我们就可以说在这个维度上,向量2可以由2个向量1表示。
那么进一步,假如每个维度上,向量2都可以由2个向量1表示,那么向量2就可以由向量1完全替代,这就是线性表示。
a = k_1 * a_1 + k_2 * a_2 + … + k_m * a_m
其中k_i为任意数(不一定是整数),则a由各个a_i线性表示
进一步,所谓线性无关,就是一组独一无二的向量,它们之间不存在任何可以互相完全替代的向量。
0 = k_1 * a_1 + k_2 * a_2 + … + k_m * a_m
其中k_i为任意数(不一定是整数),它们不全为0,则各个a_i线性无关
从几何上理解(当然这里几何由于现实世界的限制,只有三维),线性表示,就是某个向量可以由平行四边形相加法则由其它向量得到。某个向量由一个向量线性表示,两向量共线;某个向量由两个向量线性表示,三向量共面;某个向量由三个个个向量线性表示,四向量共空间。
从这里可以看出,线性无关的一组向量,每个向量都扩张了该向量组(向量空间)的某个维度(所谓不可替代性)。
n+1个n维向量一定是线性相关的
几何理解,n维向量张成了一个<=n维的空间,这个空间显然不存在n+1个不同的维度,也就是n+1个线性无关的向量。
部分组线性相关,整体组线性相关
整体组线性无关,部分组线性无关
从几何角度,理解很直观。从替代关系角度,部分组已经有人可以互相替代了,那这些可以互相替代的人肯定还在整体组里面,整体组也有人可以互相替代,他们不是独一无二的;整体组独一无二,那从里面随便选几个人肯定也是独一无二的。
线性无关组的延长组线性无关
线性相关组的缩短组线性相关
几何上似乎有点难以理解,我们从替代关系的角度理解。线性无关组,每个向量至少有一个维度是独一无二的,延长这个组,仍然有一个维度是独一无二的;线性相关组,至少存在一个向量,它的每一个维度都可以用其它向量一起替代,那么缩短这个组,刚才那个向量的每个维度仍然是可以用其它向量一起替代的