线性代数 特征值和特征向量的理解

线性代数 特征值和特征向量的理解

首先,n阶方阵在几何上对应的是某一种线性变换

n维空间中的一个向量乘以该矩阵,得到的结果就是在空间中对这个向量进行该矩阵对应的线性变换后得到的向量。

因此,特征值和特征向量

AX = λX

的几何含义就是,向量X在经过线性变换A之后,得到的向量只在原向量的基础上线性变化了λ倍,它们仍然是共线的。

一个特征值可能对应着多个特征向量,而一个特征向量只有一个对应的特征值

很好理解,沿某个方向拉伸λ倍的线性变换A,这个方向上的所有向量肯定都是的λ特征向量;而线性变化A是独一无二的,它不可能既将一个向量拉伸λ1倍,又将一个向量拉伸λ2倍。

特征值的数量不可能超过空间的维数

直观理解,二维空间里面有某个特征向量,那么考虑三种二维线性变换:旋转、拉伸和剪切,则旋转前后最多有一个不变的方向(一般是零个,这个方向称为特征方向),对应着一个特征值;拉伸前后最多有一个不变的方向,对应的特征值只有一个;剪切前后最多有两个不变的方向,对应的特征值最多有两个,这些变换的线性组合不可能产生更多数量的特征值和特征方向,。

而特征方向即使不同,特征值还是有可能相同的,两个特征方向刚好有相同的特征值,那么这个特征值就至少是一个二重特征值,假如某个维度上没有特征方向(例如二维空间沿某个方向的拉伸变换),那么这个维度要算在其它特征方向的特征值的重数中,看起来就像二维空间里面进行的一维变换使得另一个特征方向被隐藏了一样。

总之,特征值的重数为特征方向的理论个数,这些特征方向可能在低维上重叠在一起,就成了我们直观上观察到的特征向量的实际个数。

因此,特征值的数量不可能超过特征方向的数量(一对多关系),而根据前面的几何理解,特征方向的数量也不可能超过空间的维数(可以说特征方向就代表了空间的维度特征),因此,特征值的数量不可能超过空间的维数。

矩阵的 K 重特征值至多有 K 个线性无关的特征向量

根据前面的几何理解,K重特征值对应的特征方向 最多有K个,对应的特征向量数量可以有无数个,但是特征方向就是特征向量的,线性无关的特征向量个数就是特征方向的个数,最多有K个。

利用解方程方程思想解释,个人感觉更好理解。n元方程组

( A - λ**E **) X = 0

中,假如特征值λ是k重特征值,那么这个λ对应的方程组基础解系中解向量的个数就是线性无关的特征向量的个数。方程组对应系数矩阵的秩最少n-k(这一点可以观察求特征值的过程,将系数矩阵化为上三角矩阵,矩阵的对角线刚好就是λ的各个因式,k重特征值对应的那个因式为0,但是那一整行不一定为0,其它因式一定不为0)因此根据求基础解系的过程,n-r(A) <= k,意味着基础解系中最多只有k个解。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值