线性代数 矩阵相似对角化的理解

本文深入探讨了线性代数中矩阵的相似对角化概念,解释了如何通过基变换将线性变换在新坐标系下表示为对角矩阵。这一过程涉及矩阵的特征向量和特征值,阐述了P-1AP公式的意义,即矩阵在不同坐标系下的表示。通过理解这种坐标变换,可以更好地理解和应用矩阵的相似性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性代数 矩阵相似对角化的理解

矩阵的相似对角化,是一种基变换,或者说是坐标系变换,本质上是将线性变换在原坐标系(标准坐标系)中的表示变换为在新的坐标系下的表示,而这个新的坐标系刚好是由线性变换的一组线性无关的特征向量作为基建立的。

在n维空间中的n个线性无关的向量张成了这个n维空间,它们是这个n维空间的一组基底。一般地,二维空间,我们用i和j两个单位正交基来建立坐标系表示,也就是我们的x轴和y轴。同样的道理,我们也可以用任意一组基底建立坐标系描述,将原来的坐标系下的一个或者一组向量变换到新基底下的表示方式,就是基变换

对于一组原空间下的向量(或者说一个变换),我们如何将其转化为用新的一组基底表示呢?

考虑原坐标系(标准坐标系)下的一线性变换A,以基底P建立的新坐标系下有一向量X,X各个维度的值是基底P中各个基底向量方向的坐标,P中的各个基底还是原坐标系(标准坐标系)下的表示方式,那么X在原坐标系下的表示自然就是PX,X在原坐标系下线性变换后得到的结果自然就是APX。我们既然将新坐标系下的某个向量左乘基底P得到原坐标系下的向量,那么再左乘一个P-1,就可以变换回新坐标系。因此,P-1APX就是X经过原坐标系下的线性变换A后在新坐标系下得到的向量。换个角度看,P-1AP就是原坐标系下的线性变换A在新坐标系下的表示。

因此我们知道了

P-1AP

就是原坐标系下的矩阵变换为以P为基底的新坐标系的矩阵的方式。

进一步地,这不就是矩阵相似的定义吗。现在我们知道了,矩阵的相似,本质上就是矩阵的坐标系变换。

而相似对角化,相似变换矩阵P就是矩阵A的线性无关特征向量组,以这些特征向量作为基底,得到的矩阵A对应的变换在新坐标系下就是延长或者缩短新坐标系的基底,自然是一个对角矩阵,因此便被称为相似对角化。这个对角矩阵对角线上的值就是每个基底被缩放的值,也就是对应的特征值了。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值