欧几里得算法求最大公约数
欧几里得算法是一个非常经典的算法,它的基本步骤如下:
- 给定两正整数m,n
- 选取其中较小的数,假定为m
- 若n%m非0,即存在余数,将n和m中较大的数n替换为余数,返回步骤2
- 若n%m为0,则最大公约数为m
直观上看,可以这样理解欧几里得算法:
“辗转相除法的演示动画: 两条线段长分别可表示252和105,则其中每一小分段长代表最大公约数21。如动画所示,只要辗转地从大数中减去小数,直到其中一段的长度为0,此时剩下的一条线段的长度就是252和105的最大公因数。”
“算法的演示动画。最初的绿色矩形的长和宽分别是a = 1071、b = 462,从中不断铺上462×462的正方形直到剩下部分面积是462×147;然后再铺上147×147的正方形直至剩下21×147的面积;最后,铺上21×21的正方形时,绿色部分就没有了。即21是1071和462的最大公约数”
c++代码实现:
//输入:两个正整数m,n
//输出:m,n的最大公约数
int gcd(int m,int n){
if(m%n==0) return n;
if(n%m==0) return m;
if(m>=n) return gcd(n,m%n);
else return gcd(m,n%m);
}
//输入:两个正整数m,n
//输出:m,n的最大公约数
//默认m>n,即使不是,经过一次循环之后也可满足
int gcd(int m,int n){
return n==0?m:gcd(n,m%n);
}
//输入:两个正整数m,n
//输出:m,n的最大公约数
//默认m>n,即使不是,经过一次循环之后也可满足
//非递归实现
int gcd(int m,int n){
int t = 0;
while(n!=0){
t = n;
n = m%n;
m = t;
}
return m;
}
时间复杂度分析:https://blog.csdn.net/ZeroOnet/article/details/53375313