欧几里得算法求最大公约数

欧几里得算法求最大公约数

欧几里得算法是一个非常经典的算法,它的基本步骤如下:

  1. 给定两正整数m,n
  2. 选取其中较小的数,假定为m
  3. 若n%m非0,即存在余数,将n和m中较大的数n替换为余数,返回步骤2
  4. 若n%m为0,则最大公约数为m

直观上看,可以这样理解欧几里得算法:

“辗转相除法的演示动画: 两条线段长分别可表示252和105,则其中每一小分段长代表最大公约数21。如动画所示,只要辗转地从大数中减去小数,直到其中一段的长度为0,此时剩下的一条线段的长度就是252和105的最大公因数。”
在这里插入图片描述

“算法的演示动画。最初的绿色矩形的长和宽分别是a = 1071、b = 462,从中不断铺上462×462的正方形直到剩下部分面积是462×147;然后再铺上147×147的正方形直至剩下21×147的面积;最后,铺上21×21的正方形时,绿色部分就没有了。即21是1071和462的最大公约数”
在这里插入图片描述

c++代码实现:

//输入:两个正整数m,n
//输出:m,n的最大公约数
int gcd(int m,int n){
    if(m%n==0) return n;
    if(n%m==0) return m;
    
    if(m>=n) return gcd(n,m%n);
    else return gcd(m,n%m);
}
//输入:两个正整数m,n
//输出:m,n的最大公约数
//默认m>n,即使不是,经过一次循环之后也可满足
int gcd(int m,int n){
    return n==0?m:gcd(n,m%n);
}
//输入:两个正整数m,n
//输出:m,n的最大公约数
//默认m>n,即使不是,经过一次循环之后也可满足
//非递归实现
int gcd(int m,int n){
    int t = 0;
    while(n!=0){
        t = n;
        n = m%n;
        m = t;
    }
    return m;
}

时间复杂度分析:https://blog.csdn.net/ZeroOnet/article/details/53375313

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值