动态规划之0-1背包问题

问题描述

给定一个物品集合s={1,2,3,…,n},物品i的重量是wi,其价值是vi,背包的容量为W,即最大载重量不超过W。在限定的总重量W内,我们如何选择物品,才能使物品的总价值最大。
注:如果物品不能分割,即物品i要么整个选取,要么不选取;如果不能将物品i装入背包多次,也不能只装入部分物品i,则问题称为0-1背包问题。
如果物品可以拆分,则问题称为背包问题,适合使用贪心算法。

问题建模

在这里插入图片描述

递归关系分析

定义备忘录数组p[i,j]:背包容量为j,可选物品为i,i+1,…,n时的0-1背包问题的最优值
在这里插入图片描述

W=5
重量w2132
价值v12102015

以此背包为例按递归式建立备忘录

物品n|容量j012345
0015151515
物品n|容量j012345
0015202035
0015151515
物品n|容量j012345
01015253035
0015202035
0015151515
物品n|容量j012345
0000037
01015253035
0015202035
0015151515

代码实现

#define NUM 50	//物品数量的上限
#define CAP 1500	//背包容量的上限
int w[NUM];		//物品的重量
int v[NUM];		//物品的价值
int p[NUM][CAP];	//用于递归的数组
//形参c是背包的容量W,n是物品的数量
void knapsack(int c, int n) 
{ 
  //计算递推边界
  int jMax=min(w[n]-1,c); 		//分界点
  for( int j=0; j<=jMax; j++)   p[n][j]=0; //初始化
  for( int j=w[n]; j<=c; j++)    p[n][j]=v[n];//初始化
  for( int i=n-1; i>1; i--) 		//计算递推式
  { 
	jMax=min(w[i]-1,c);
	for( int j=0; j<=jMax; j++) 
	  p[i][j]=p[i+1][j]; 
	for(int j=w[i]; j<=c; j++) 
	  p[i][j]=max(p[i+1][j], p[i+1][j-w[i]]+v[i]); 
  } 
  p[1][c]=p[2][c]; 			//计算最优值,节省计算量,最后一行只算最后一个最终解
  if (c>=w[1])   p[1][c]=max(p[1][c], p[2][c-w[1]]+v[1]); 
}

追踪解

void traceback( int c, int n, int x[ ]) 
{ 
 for(int i=1; i<n; i++) 
 {
  if (p[i][c]==p[i+1][c]) x[i]=0; 
  else { x[i]=1; c-=w[i]; } 
 }
 x[n]=(p[n][c])? 1:0; 
}

在这里插入图片描述

整体时间复杂度

O(nW)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值