方法一:滑动窗口
思路和算法
我们先用一个例子考虑如何在较优的时间复杂度内通过本题。
我们不妨以示例一中的字符串
abcabcbb
abcabcbb 为例,找出从每一个字符开始的,不包含重复字符的最长子串,那么其中最长的那个字符串即为答案。对于示例一中的字符串,我们列举出这些结果,其中括号中表示选中的字符以及最长的字符串:
以
(a)bcabcbb
(a)bcabcbb 开始的最长字符串为
(abc)abcbb
(abc)abcbb;
以
a(b)cabcbb
a(b)cabcbb 开始的最长字符串为
a(bca)bcbb
a(bca)bcbb;
以
ab(c)abcbb
ab(c)abcbb 开始的最长字符串为
ab(cab)cbb
ab(cab)cbb;
以
abc(a)bcbb
abc(a)bcbb 开始的最长字符串为
abc(abc)bb
abc(abc)bb;
以
abca(b)cbb
abca(b)cbb 开始的最长字符串为
abca(bc)bb
abca(bc)bb;
以
abcab(c)bb
abcab(c)bb 开始的最长字符串为
abcab(cb)b
abcab(cb)b;
以
abcabc(b)b
abcabc(b)b 开始的最长字符串为
abcabc(b)b
abcabc(b)b;
以
abcabcb(b)
abcabcb(b) 开始的最长字符串为
abcabcb(b)
abcabcb(b)。
发现了什么?如果我们依次递增地枚举子串的起始位置,那么子串的结束位置也是递增的!这里的原因在于,假设我们选择字符串中的第
k
k 个字符作为起始位置,并且得到了不包含重复字符的最长子串的结束位置为
r
k
r
k
。那么当我们选择第
k
+
1
k+1 个字符作为起始位置时,首先从
k
+
1
k+1 到
r
k
r
k
的字符显然是不重复的,并且由于少了原本的第
k
k 个字符,我们可以尝试继续增大
r
k
r
k
,直到右侧出现了重复字符为止。
这样一来,我们就可以使用「滑动窗口」来解决这个问题了:
我们使用两个指针表示字符串中的某个子串(或窗口)的左右边界,其中左指针代表着上文中「枚举子串的起始位置」,而右指针即为上文中的
r
k
r
k
;
在每一步的操作中,我们会将左指针向右移动一格,表示 我们开始枚举下一个字符作为起始位置,然后我们可以不断地向右移动右指针,但需要保证这两个指针对应的子串中没有重复的字符。在移动结束后,这个子串就对应着 以左指针开始的,不包含重复字符的最长子串。我们记录下这个子串的长度;
在枚举结束后,我们找到的最长的子串的长度即为答案。
判断重复字符
在上面的流程中,我们还需要使用一种数据结构来判断 是否有重复的字符,常用的数据结构为哈希集合(即 C++ 中的 std::unordered_set,Java 中的 HashSet,Python 中的 set, JavaScript 中的 Set)。在左指针向右移动的时候,我们从哈希集合中移除一个字符,在右指针向右移动的时候,我们往哈希集合中添加一个字符。
至此,我们就完美解决了本题。
class Solution {
public int lengthOfLongestSubstring(String s) {
// 哈希集合,记录每个字符是否出现过
Set<Character> occ = new HashSet<Character>();
int n = s.length();
// 右指针,初始值为 -1,相当于我们在字符串的左边界的左侧,还没有开始移动
int rk = -1, ans = 0;
for (int i = 0; i < n; ++i) {
if (i != 0) {
// 左指针向右移动一格,移除一个字符
occ.remove(s.charAt(i - 1));
}
while (rk + 1 < n && !occ.contains(s.charAt(rk + 1))) {
// 不断地移动右指针
occ.add(s.charAt(rk + 1));
++rk;
}
// 第 i 到 rk 个字符是一个极长的无重复字符子串
ans = Math.max(ans, rk - i + 1);
}
return ans;
}
}