#机器学习--实例--主成分分析

#机器学习--实例--主成分分析

引言

        本系列博客旨在为机器学习(深度学习)提供数学理论基础。因此内容更为精简,适合二次学习的读者快速学习或查阅。


主成分分析(PCA)介绍

        主成分分析(principal components analysis,PCA)是一个简单的机器学习算法,能够在损失精度尽可能少的前提下,对数据进行有损压缩。


推导过程

        假设有矩阵 A m , n A_{m,n} Am,n ,我们希望通过一个函数 f f f 对其进行有损压缩,即 C l , n = f ( A m , n ) ( l ≤ m ) C_{l,n}=f(A_{m,n})(l\le m) Cl,n=f(Am,n)(lm) 。压缩后,我们希望能够通过一个函数 g g g 对其进行最大程度的还原,即 A m , n ≈ g ( C l , n ) A_{m,n}\approx g(C_{l,n}) Am,ng(Cl,n)
        为了使问题简化,我们令解码函数 g ( C l , n ) = D m , l C l , n g(C_{l,n})=D_{m,l}C_{l,n} g(Cl,n)=Dm,lCl,n ,在此假设下,我们需要找到编码函数 f f f ,使得信息损失最小,即:
arg min ⁡ C ∣ ∣ D C − A ∣ ∣ F \argmin_{C}||DC-A||_{F} Cargmin∣∣DCAF = > arg min ⁡ C ∣ ∣ D C − A ∣ ∣ F 2 =>\argmin_{C}||DC-A||_{F}^{2} =>Cargmin∣∣DCAF2 = > arg min ⁡ C T r [ ( D C − A ) ( D C − A ) T ] =>\argmin_{C}Tr[(DC-A)(DC-A)^{T}] =>CargminTr[(DCA)(DCA)T] = > arg min ⁡ C T r ( D C C T D T − D C A T − A C T D T + A A T ) =>\argmin_{C}Tr(DCC^{T}D^{T}-DCA^{T}-AC^{T}D^{T}+AA^{T}) =>CargminTr(DCCTDTDCATACTDT+AAT) = > arg min ⁡ C T r ( D C C T D T ) − 2 T r ( D C A T ) =>\argmin_{C}Tr(DCC^{T}D^{T})-2Tr(DCA^{T}) =>CargminTr(DCCTDT)2Tr(DCAT) 求导,令导数为 0 得: D T D C = D T A 求导,令导数为0得:D^{T}DC=D^{T}A 求导,令导数为0得:DTDC=DTA
        为了确保矩阵 D D D 的唯一性,令 D D D 中所有列向量均互为单位正交向量,即 D T D = I l D^{T}D=I_{l} DTD=Il,有 C = D T A C=D^{T}A C=DTA,即 f ( A ) = D T A f(A)=D^{T}A f(A)=DTA 。至此编码函数找到了,最后一步需要找到矩阵 D D D ,使得编码解码后的信息损失最小,即:
arg min ⁡ D ∣ ∣ A − D D T A ∣ ∣ F , s . t . D T D = I l \argmin_{D}||A-DD^{T}A||_{F},s.t.D^{T}D=I_{l} Dargmin∣∣ADDTAF,s.t.DTD=Il = > arg min ⁡ D ∣ ∣ A − D D T A ∣ ∣ F 2 , s . t . D T D = I l =>\argmin_{D}||A-DD^{T}A||^{2}_{F},s.t.D^{T}D=I_{l} =>Dargmin∣∣ADDTAF2,s.t.DTD=Il = > arg min ⁡ D T r [ ( A − D D T A ) ( A − D D T A ) T ] , s . t . D T D = I l =>\argmin_{D}Tr[(A-DD^{T}A)(A-DD^{T}A)^{T}],s.t.D^{T}D=I_{l} =>DargminTr[(ADDTA)(ADDTA)T],s.t.DTD=Il = > arg min ⁡ D T r ( A A T − 2 A A T D D T + A A T D D T D D T ) , s . t . D T D = I l =>\argmin_{D}Tr(AA^{T}-2AA^{T}DD^{T}+AA^{T}DD^{T}DD^{T}),s.t.D^{T}D=I_{l} =>DargminTr(AAT2AATDDT+AATDDTDDT),s.t.DTD=Il = > arg min ⁡ D − T r ( A A T D D T ) , s . t . D T D = I l =>\argmin_{D}-Tr(AA^{T}DD^{T}),s.t.D^{T}D=I_{l} =>DargminTr(AATDDT),s.t.DTD=Il 根据拉格朗日乘数法,有: arg min ⁡ D − T r ( A A T D D T ) + λ ( D T D − I l ) 根据拉格朗日乘数法,有:\argmin_{D}-Tr(AA^{T}DD^{T})+\lambda(D^{T}D-I_{l}) 根据拉格朗日乘数法,有:DargminTr(AATDDT)+λ(DTDIl) 求导,令导数为 0 得: A A T D = λ D 求导,令导数为0得:AA^{T}D=\lambda D 求导,令导数为0得:AATD=λD
        最终我们得出结论, D l , n D_{l,n} Dl,n 就是由矩阵 A A T AA^{T} AAT l l l 个单位特征向量所构成的。若有不懂,请回顾前面的线性代数基础部分。


代码实现

import numpy as np


class PCAModel:
    def __init__(self):
        self.d = None

    def fit(self, x, target_l):
        """
        填充训练数据,进行主成分分析
        :param x: 训练数据矩阵,每一个列向量为一条训练数据
        :param target_l: 目标维度,应小于矩阵x中列向量的长度
        """
        if target_l >= x.shape[0]:
            raise ValueError("target_l should greater than x.shape[0]")
        features, f_vec = np.linalg.eig(np.matmul(x, x.T))
        self.d = f_vec[:, :target_l]

    def transform(self, x):
        """
        对数据x进行降维
        """
        return np.matmul(self.d.T, x)

    def reverse_transform(self, x):
        """
        对数据x进行还原
        """
        return np.matmul(self.d, x)


train_x = np.array([[1,2],[3,4],[5,6]])
print(train_x)
# [[1 2]
#  [3 4]
#  [5 6]]
model = PCAModel()
model.fit(tran_x, 2)
result = model.transform(train_x)
print(result)
# [[-5.90229186 -7.47652631]
#  [ 0.40367167 -0.3186758 ]]
pred_y = model.reverse_transform(result)
print(pred_y)
# [[1. 2.]
#  [3. 4.]
#  [5. 6.]]

        从运行结果中可以看出,对数据进行压缩后能够完美进行还原。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值