Codeforces 113D Museum (期望DP + 高斯消元)

题目链接

题目大意:
N N N个房间,其中两个房间 A A A, B B B 里各有一个人。有 M M M对房间通过双向边连通。每一个时刻,每个人有一定概率 p i p_i pi留在 i i i 号房间,或者有 1 − p i 1-p_i 1pi的概率离开,等概率前往相邻房间。两人一旦处于同一房间则立即停下来。求对于所有的房间 i i i,两人在 i i i 号房间相遇的概率是多少
PS:
1.在过道内相遇不算
2.所有房间保证连通

解法:
考虑DP,设 f [ i ] [ j ] f[i][j] f[i][j] 为一个人在房间 i i i ,同时另一个人在 房间 j j j 的状态出现期望,转移情况显然为:

f [ i ] [ j ] = P i ⋅ P j ⋅ f [ i ] [ j ] + P i ⋅ ∑ 1 − P k deg ⁡ [ k ] ⋅ f [ i ] [ k ] + P j ⋅ ∑ 1 − P k deg ⁡ [ k ] ⋅ f [ k ] [ j ] + ∑ ∑ 1 − P k deg ⁡ [ k ] ⋅ 1 − P h deg ⁡ [ h ] ⋅ f [ k ] [ h ] f\left[ i\right] \left[ j\right] =P_{i}\cdot P_{j}\cdot f\left[ i\right] \left[ j\right] +P_{i}\cdot \sum \dfrac {1-P_{k}}{\deg \left[ k\right] }\cdot f\left[ i\right] \left[ k\right] +P_{j}\cdot \sum \dfrac {1-P_{k}}{\deg \left[ k\right] }\cdot f\left[ k\right] \left[ j\right] +\sum \sum \dfrac {1-P_{k}}{\deg \left[ k\right] }\cdot \dfrac {1-P_{h}}{\deg \left[ h\right] }\cdot f\left[ k\right] \left[ h\right] f[i][j]=PiPjf[i][j]+Pideg[k]1Pkf[i][k]+Pjdeg[k]1Pkf[k][j]+deg[k]1Pkdeg[h]1Phf[k][h]

一共有 n 2 n^2 n2 个变量,所以复杂度为 O ( n 6 ) O(n^6) O(n6)

又因为终止状态 ( i , i ) (i,i) (i,i)的出现次数只能为 1 / 0 1/0 1/0 所以终止状态的概率即为期望

注意:
1.初始化 f [ A ] [ B ] = 1 f[A][B] = 1 f[A][B]=1
2. 终止状态 ( i , i ) (i,i) (i,i)不能转移到其他状态,但可以从其他状态转移过来

Code:

#include <bits/stdc++.h>
using namespace std;
const long double eps = 1e-8;
const int MX = 25 + 7;
int n,m,A,B,cnt;
double p[MX];

inline int F(int x,int y){return (x - 1) * n + y;}
struct Edge{
	int v,next;
}e[2 * MX * MX];
int head[MX],ecnt,deg[MX];
void add(int u,int v){
	deg[u]++;
	e[++ecnt].v = v;
	e[ecnt].next = head[u];
	head[u] = ecnt;
}

double f[MX*MX][MX*MX];

void build(){
	cnt = n * n;
	f[F(A,B)][cnt+1] = 1;
	for(int i = 1;i <= n;++i){
		for(int j = 1;j <= n;++j){
			int u = F(i,j);
			f[u][u] = 1;
			if(i != j) f[u][u] -= (p[i] * p[j]);
			for(int k = head[j];k;k = e[k].next){
				int v = e[k].v;
				if(v != i) f[u][F(i,v)] -= p[i] * (1 - p[v]) / deg[v];
			}
			for(int k = head[i];k;k = e[k].next){
				int v = e[k].v;
				if(v != j) f[u][F(v,j)] -= p[j] * (1 - p[v]) / deg[v];
			}
			for(int k = head[i];k;k = e[k].next){
				for(int h = head[j];h;h = e[h].next){
					int v1 = e[k].v, v2 = e[h].v;
					if(v1 != v2) f[u][F(v1,v2)] -= (1 - p[v1]) * (1 - p[v2]) / (1.0 * deg[v1] * deg[v2]);
				}
			}
		}
	}
}
double ans[MX*MX];
void Gauss(){
	for(int i = 1;i <= cnt;++i){
		int r = i;
		for(int j = i + 1;j <= cnt;++j) if(fabs(f[r][i]) < fabs(f[j][i])) r = j;
		if(fabs(f[r][i]) < eps) continue;
		if(i != r) swap(f[i],f[r]);
		double div = f[i][i];
		for(int j = i;j <= cnt + 1;++j) f[i][j] /= div;
		for(int j = i + 1;j <= cnt;++j){
			div = f[j][i];
			for(int k = i;k <= cnt + 1;++k)
				f[j][k] -= f[i][k] * div;
		}
	}
	ans[cnt] = f[cnt][cnt+1];
	for(int i = cnt - 1;i;--i){
		ans[i] = f[i][cnt+1];
		for(int j = i + 1;j <= cnt;++j)
			ans[i] -= (f[i][j] * ans[j]);
	}
}
int main(){
	scanf("%d %d %d %d",&n,&m,&A,&B);
	for(int i = 1;i <= m;++i){
		int u,v;scanf("%d %d",&u,&v);
		add(u,v);add(v,u);
	}
	for(int i = 1;i <= n;++i) scanf("%lf",&p[i]);
	build();Gauss();
	for(int i = 1;i <= n;++i) printf("%.6f%c", ans[F(i,i)],(i == n) ? '\n' : ' ');
	return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值