CodeForces 113D Museum (高斯消元)

#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <cmath>
using namespace std;


#define N 23


vector<int> g[N];


int n, m, a, b;
int d[N];
double p[N];

double A[N * N][N * N], X[N * N][N], B[N * N][N];
int mp[N][N];
int tot;

int f(int a, int b) {
	if(a > b) swap(a, b);
	return mp[a][b];
}
void get_A() {
	for(int i = 1; i <= n; ++i) {
		for(int j = i; j <= n; ++j) {
			mp[i][j] = ++tot;
		}
	}

	for(int i = 1; i <= n; ++i) {
		A[mp[i][i]][mp[i][i]] = 1;

		for(int j = i + 1; j <= n; ++j) {
			int t = f(i, j);

			A[t][t] += 1 - p[i] * p[j];
			for(int x = 0; x < g[i].size(); ++x) {
				int u = g[i][x];
				int w = f(j, u);
				A[t][w] += - (1 - p[i]) / d[i] * p[j];
			}
			for(int y = 0; y < g[j].size(); ++y) {
				int v = g[j][y];
				int w = f(i, v);
				A[t][w] += - p[i] * (1 - p[j]) / d[j];
			}
			for(int x = 0; x < g[i].size(); ++x) {
				for(int y = 0; y < g[j].size(); ++y) {
					int u = g[i][x];
					int v = g[j][y];
					int w = f(u, v);
					A[t][w] += -(1 - p[i]) / d[i] * (1 - p[j]) / d[j];
				}
			}
		}
	}
}

void get_B() {
	for(int i = 1; i <= n; ++i) {
		B[f(i, i)][i] = 1;
	}
}

void gauss() {
	for(int i = 1; i <= tot; ++i) {
		int u = i;
		double tmp = fabs(A[i][i]);
		for(int j = i; j <= tot; ++j) {
			if(fabs(A[j][i]) > tmp) {
				tmp = fabs(A[j][i]);
				u = j;
			}
		}
		for(int j = i; j <= tot; ++j) swap(A[i][j], A[u][j]);
		for(int j = 1; j <= n; ++j) swap(B[i][j], B[u][j]);

		for(int j = i + 1; j <= tot; ++j) {
			if(fabs(A[j][i]) > 1e-14) {
				double t = A[j][i] / A[i][i];
				for(int k = i; k <= tot; ++k) A[j][k] -= A[i][k] * t;
				for(int k = 1; k <= n; ++k) B[j][k] -= B[i][k] * t;
			}
		}
	}
	for(int i = 1; i <= n; ++i) {
		for(int j = tot; j >= 1; --j) {
			X[j][i] = B[j][i];
			for(int k = j + 1; k <= tot; ++k) {
				X[j][i] -= X[k][i] * A[j][k];
			}
			X[j][i] /= A[j][j];
		}
	}
}


int main() {
	scanf("%d%d%d%d", &n, &m, &a, &b); if(a > b) swap(a, b);
	for(int i = 1; i <= m; ++i) {
		int u, v;
		scanf("%d%d", &u, &v);
		g[u].push_back(v);
		g[v].push_back(u);
		d[u]++;
		d[v]++;
	}

	for(int i = 1; i <= n; ++i) scanf("%lf", &p[i]);

	get_A();


	get_B();

	gauss();
	for(int i = 1; i <= n; ++i) {
		printf("%.12lf%c", X[f(a, b)][i], i == n? '\n': ' ');
	}
	return 0;
}

CodeForces - 616D是一个关于找到一个序列中最长的第k好子段的起始位置和结束位置的问题。给定一个长度为n的序列和一个整数k,需要找到一个子段,该子段中不超过k个不同的数字。题目要求输出这个序列最长的第k好子段的起始位置和终止位置。 解决这个问题的方法有两种。第一种方法是使用尺取算法,通过维护一个滑动窗口来记录\[l,r\]中不同数的个数。每次如果这个数小于k,就将r向右移动一位;如果已经大于k,则将l向右移动一位,直到个数不大于k。每次更新完r之后,判断r-l+1是否比已有答案更优来更新答案。这种方法的时间复杂度为O(n)。 第二种方法是使用枚举r和双指针的方法。通过维护一个最小的l,满足\[l,r\]最多只有k种数。使用一个map来判断数的种类。遍历序列,如果当前数字在map中不存在,则将种类数sum加一;如果sum大于k,则将l向右移动一位,直到sum不大于k。每次更新完r之后,判断i-l+1是否大于等于y-x+1来更新答案。这种方法的时间复杂度为O(n)。 以上是两种解决CodeForces - 616D问题的方法。具体的代码实现可以参考引用\[1\]和引用\[2\]中的代码。 #### 引用[.reference_title] - *1* [CodeForces 616 D. Longest k-Good Segment(尺取)](https://blog.csdn.net/V5ZSQ/article/details/50750827)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Codeforces616 D. Longest k-Good Segment(双指针+map)](https://blog.csdn.net/weixin_44178736/article/details/114328999)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值