【method】ADMM-CSNet | 一种图像压缩感知重建的深度学习方法(1)- 方法解析

#! https://zhuanlan.zhihu.com/p/644157062

【method】ADMM-CSNet | 一种图像压缩感知重建的深度学习方法(1)- 方法解析

🎯 Paper: https://ieeexplore.ieee.org/document/8550778

🚀 matlab: https://github.com/yangyan92/Deep-ADMM-Net

🚀pytorch: https://github1s.com/lixing0810/Pytorch_ADMM-CSNet/blob/HEAD/network/CSNet_Layers.py

摘要

本文将传统的基于模型的CS方法和数据驱动的深度学习方法相结合,地考虑了一个图像重建的广义CS模型,使用ADMM算法求解该模型,并进一步将ADMM算法扩展为unrolling深度网络,使得ADMM的所有参数通过端到端判别学习实现。

该方法在复数MR成像和实自然图像上实现了较好的重建精度。

广义压缩感知模型

本节展示了generalized CS model并提出了两种ADMM迭代求解方法。

1.Model

约束的标准CS模型定义为:

  • 稀疏系数 s s s目标使用正交稀疏基 Ψ \Psi Ψ重构原始信号 x x x,即 x = Ψ s x = \Psi s x=Ψs
  • y y y x x x的观测, Φ \Phi Φ为随机欠采样矩阵;

Ψ l + \Psi_l^+ Ψl+ Ψ + 的第 \Psi^+的第 Ψ+的第 l l l行。

由于 x x x任意分辨率,进一步将图像表示 Ψ + x \Psi^+ x Ψ+x推广到使用固定局部滤波器的图像卷积,并将 l 1 l_1 l1正则推广到更通用的正则化 g ( ⋅ ) g(\cdot) g()。这便可以放松对 Ψ \Psi Ψ正交性和可逆性的要求,定义广义CS模型

D l D_l Dl为第 l l l个卷积运算的变换矩阵, l l l为滤波器的数量。

说明:特殊情况下,举个例子 D l D_l Dl可以是离散余弦变换, g ( ⋅ ) g(\cdot) g()可以为 l q , q ∈ [ 0 , 1 ] l_q,q\in[0,1] lq,q[0,1]稀疏正则。在本文中把他们设置为可学习的。

2. ADMM Solver

下面根据引入辅助变量方式的不同,提出了两种ADMM求解器:

a. Solver 1:引入变换域独立辅助变量 z = z 1 , . . . , z L z = {z_1,...,z_L} z=z1,...,zL,则公示(8)等价于

其增广拉格朗日函数形式为

image-20230716020743876

< α l , D l x − z l > = α l ( D l x − z l ) <\alpha_l,D_lx-z_l> = \alpha_l(D_lx-z_l) <αl,Dlxzl>=αl(Dlxzl) λ , ρ \lambda,\rho λ,ρ为人为设定的惩罚因子。

接着令 β l = α l ρ l \beta_l = \frac{\alpha_l}{\rho_l} βl=ρlαl,则ADMM可以用简化版缩放形式替代,通过交替优化下面的子问题求解:

η l \eta_l ηl为拉格朗日乘数的更新率

上述ADMM缩放形式推导:(具体推导参考自【1】【凸优化笔记7】-交替方向乘子法(ADMM) - 知乎 (zhihu.com)

ADMM solver[11]可以通过下面的迭代式进行求解:

n n n代表有多少次迭代, H H H为共轭转置, S ( ⋅ ) S(\cdot) S()表示具有参数 λ l / ρ l \lambda_l/\rho_l λl/ρl的关于 g ( ⋅ ) g(\cdot) g()的非线性近端映射(参考【2】近端映射与软阈值)算子,通常是软阈值或者硬阈值函数,分别对应 l 1 l_1 l1或者 l 0 l_0 l0稀疏正则化,具体可以看参考【2】。

上述求解式的推导如下:(参考【1】)

b. Solver 2:在图像域中引入辅助变量 z z z,则公示(8)等价于:

增广拉格朗日函数为:

β l = α l ρ l \beta_l = \frac{\alpha_l}{\rho_l} βl=ρlαl,则ADMM缩放形式为:

[15] 可以通过下面的迭代式进行求解:

一种求解[15]中第二项的方法是直接进行梯度下降,如[17],其中 H ( ⋅ ) H(\cdot) H()表示正则项 g ( ⋅ ) g(\cdot) g()的导数。

3.重建的高效计算

用于CS成像的ADMM-CSNET

1.Basic-ADMM-CSNet

基于ADMM solver I (公式[12]),如图[1]:

2. Generic-ADMM-CSNet

对solver2使用神经网络进行拓展,提出Generic-ADMM-CSNet。

下图为提出的网络结构:

图1 网络结构

图二 data flow:实心箭头表示正向过程中的数据流,虚线箭头表示反向传播中的反向流。

图二 data flow:实心箭头表示正向过程中的数据流,虚线箭头表示反向传播中的反向流。

整个迭代流程为: (除了整个结构的迭代循环,z zz 的内部(红色框部分)又有多次的迭代循环)

**a. Reconstruction Layer X ( n ) X^{(n)} X(n):**并没有约束不同阶段的网络结构要相同;每个阶段的输出为

在第一阶段,定义

**b.Multiplier Update Layer M ( n ) M^{(n)} M(n):**模块的输出为

c.Auxiliary Variable Update Block

auxiliary variable update block to implement Z ( n ) \mathbf{Z}^{(n)} Z(n) in eqn. [16],参考公式[17]对 Z ( n ) \mathbf{Z}^{(n)} Z(n)进行求解。

每个auxiliary variable update block包括:两个卷积层 ( C 1 ( n , k ) , C 2 ( n , k ) ) (\mathbf{C}_1^{(n,k)},\mathbf{C}_2^{(n,k)}) (C1(n,k),C2(n,k)),一个非线性激活层 H \mathbf{H} H,和一个addition layer A \mathbf A A。其中n表示第n和block,k表示迭代次数

  • 卷积层 ( C 1 ( n , k ) , C 2 ( n , k ) ) (\mathbf{C}_1^{(n,k)},\mathbf{C}_2^{(n,k)}) (C1(n,k),C2(n,k)),分别代表 D l , D l T D_l,D_l^T Dl,DlT

  • 非线性激活层 H ( n , k ) \mathbf{H}^{(n,k)} H(n,k):我们不将其定义为公式8中的正则 g ( ) g() g()的导数,而是使用分段线性函数去学习一个广义的函数,如下,公式3举了例子:

    注意:当 c 1 ( n , k ) c_1^{(n,k)} c1(n,k)为复数,我们需要对实部和虚部分开求解,并且实部和虚部共享分段线性函数,如下:

  • Addition Layer A ( n , k ) \mathbf A^{(n,k)} A(n,k):简单的加权算子,定义初始化为 A ( n , 0 ) : z ( n , 0 ) = x ( n ) + β ( n − 1 ) \mathbf A^{(n,0)}: z^{(n,0)} = x^{(n)}+\beta^{(n-1)} A(n,0):z(n,0)=x(n)+β(n1)。该模块的输出为:

因此,the output of the auxiliary variable update block in n n n-th stage is z ( n ) = z ( n , N − t ) z^{(n)} = z^{(n,N-t)} z(n)=z(n,Nt)

模型的可学习参数分析:

3. Network Structure Analysis

两种ADMM-CSNet的主要不同之处在于reconstruction layer和network layers Z ( n ) \mathbf Z^{(n)} Z(n)的实现。

reconstruction layer:

  • Basic-ADMM-CSNet 使用CS MRI,如命题1、2讨论
  • Generic-ADMM-CSNet 使用CS观测矩阵进行快速矩阵求逆

network layers implementing Z ( n ) \mathbf Z^{(n)} Z(n)

  • Basic-ADMM-CSNet 使用公式12的 Z ( n ) \mathbf Z^{(n)} Z(n)闭式解
  • Generic-ADMM-CSNet 使用unfolded梯度下降迭代 Z ( n ) \mathbf Z^{(n)} Z(n),这进一步引入了用于增强网络容量的可学习参数。实现非闭式解。第6.1节所示,通用ADMMCSNet显著改善了CS-MRI的结果。

网络训练

  • paired数据:全采样x和欠采样观测y

  • 损失函数:averaged normalized root mean square error (NRMSE)

  • 可学习参数:

  • 初始化:by model-based initialization method or random initialization method

    • Model-Based Initialization:use a specific model to initialize
    • random initialization such as Gaussian distribution initialization

参考资料

【1】【凸优化笔记7】-交替方向乘子法(ADMM) - 知乎 (zhihu.com)

【2】【凸优化笔记4】-4.3 软阈值算子

  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值