参考:推荐系统介绍
以下纯属个人理解。
啥是推荐系统:把平台已有的内容通过算法模型跳出来匹配给不同类型的用户,理论上要达到,每个人看到的内容都不一样,即“千人千面”。
根据用户画像推荐对应的信息。啥是用户画像,拿抖音举例,用户画像应该包括,用户的设备信息,用户的地区信息,用户个人资料中头像、昵称、性别、年龄、简介、主动搜索的内容、点赞的内容、收藏的内容、评论的内容、停留时间较长的内容、分享的内容、点击不感兴趣的内容、用户使用app的时间段、时长、打开频率等。这些可以细分为N多个标签,根据不同的权重做聚类,划成大的人群分类、细分的人群分类,通过实时推荐反馈+机器学习,优化推荐算法,实现精准推送。
有啥用:提高人和平台内容的匹配精准度。提高信息触达效率,提高商品转化率,优化用户体验,提高用户留存率,提高程序的单位时间内商业价值。
对用户来说提高了使用体验,更容易停留,更容易产生其他交互,如短视频的转赞评,商品的购买;对平台内容提供者(短视频创作者、电商商家)来说,更容易获得精准流量,更容易获得关注,更容易卖出商品。对平台来说,用户停留时间长,内容提供者更多,数据就越多,算法越成熟,商业价值越高。
举例,淘宝买东西,搜一个之后,看了不太满意,但是详情页有同款,那多看几个可能就买了。
抖音刷视频,看了一个小姐姐视频点了赞,系统就会给你推更多小姐姐,都不用你去搜索了,那自然是一直刷一直爽了。
应用:精准推送+购物=提高商品的转化(抖音电商)
精准推送+信息流广告=提高品牌知名度(品牌+二类电商)
精准推送+内容=提高用户留存,提高涨粉速度(内容博主)
用了什么技术:大数据的采集、转化、存储、分发,机器学习。再具体点,就是涉及到日志打点,日志收集,ETL,分布式计算,特征工程,推荐算法建模,数据存储,提供接口服务,UI展示与交互,推荐效果评估等各个方面。还要在具体点,那就找个培训机构看看推荐系统学习的课程大纲。
其他更多资料:GitHub找对应源码、微信公众号文章、语雀文章、process on思维导图、b站项目。