01背包

背包问题可以简化为一个动态方程,dp[i][v]=max{dp[i-1][v],dp[i-1][v-c[i]]+w[i]}果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是dp[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
但是二维数组容易爆内存,所以降成一维:
for i=1…N
for v=V…0
dp[v]=max{dp[v],dp[v-c[i]]+w[i]}
每一步都求当前容量所能得到的最大价值。其中,如果要求背包恰好装满,就将数组的第一个元素初始化为零,若不要求,就全部初始化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值