背包问题可以简化为一个动态方程,dp[i][v]=max{dp[i-1][v],dp[i-1][v-c[i]]+w[i]}果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是dp[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
但是二维数组容易爆内存,所以降成一维:
for i=1…N
for v=V…0
dp[v]=max{dp[v],dp[v-c[i]]+w[i]}
每一步都求当前容量所能得到的最大价值。其中,如果要求背包恰好装满,就将数组的第一个元素初始化为零,若不要求,就全部初始化。
01背包
最新推荐文章于 2024-10-15 11:47:10 发布