完整参考答案
1.1 无耗传输线的特性阻抗Z=100欧姆。根据给出的已知数据,分别写出传输线上电压、电流的复数和瞬时形式的表达式:
解:本题应用到下列公式:
1.2 无耗传输线的特性阻抗Z0=100,负载电流ILj(A),负载阻抗Zj=100。试求:(1) 把传输线上的电压V(z)、电流I(z)写成入射波与反射波之和的形式;(2) 利用欧拉公式改写成纯驻波的形式。
解:根据已知条件,可得:
1.3 无耗传输线的特性阻抗,传输线上电压、电流分布表达式分别为
试求:(1) 利用欧拉公式把电压、电流分布表达式改写成入射波与反射波之和的形式;(2) 计算负载电压VL、电流IL和阻抗ZL;(3) 把(1)的结果改写成瞬时值形式。
解:根据已知条件求负载电压和电流:
1.4 无耗传输线特性阻抗Z0=50(),已知在距离负载z1=p/8处的反射系数为(z1)=j0.5。试求(1) 传输线上任意观察点z处的反射系数(z)和等效阻抗Z(z);(2) 利用负载反射系数L计算负载阻抗ZL;(3) 通过等效阻抗Z(z)计算负载阻抗ZL。
解:(1) 传输线上任意观察点z处的反射系数和等效阻抗
1.5 无耗传输线的特性阻抗Z0=50(),已知传输线上的行波比,在距离负载z1=p/6处是电压波腹点。试求:(1) 传输线上任意观察点z处反射系数(z)的表达式;(2) 负载阻抗ZL和电压波腹点z1点处的等效阻抗Z1(z1)。
解:(1) 传输线上任意观察点处反射系数的表达式
1.6 特性阻抗为Z0的无耗传输线上电压波腹点的位置是z1,电压波节点的位置是z1,试证明可用下面两个公式来计算负载阻抗ZL:
1.7 有一无耗传输线,终端接负载阻抗ZL=40+j30。试求:(1) 要使线上的驻波比最小,传输线的特性阻抗Z0应为多少?(2) 该最小驻波比和相应的电压反射系数之值;(3) 距负载最近的电压波节点位置和该处的输入阻抗(等效阻抗)。
解:(1) 要使线上的驻波比最小,传输线的特性阻抗
1.8 无耗传输线特性阻抗Z0105(),负载阻抗,利用1/4波长阻抗变换线实现匹配,试求:(1) 变换线与负载之间连线上的驻波比,(2) 在电压波腹点处进行匹配时连线的长度l(以线上波长p计);(3) 变换线的特性阻抗Z01;(4) 变换线上的驻波比。
解:(1) 变换线与负载之间连线上的驻波比
1.9 无耗传输线特性阻抗Z0=100(),通过1/4波长阻抗变换线实现了匹配,已知变换线上的驻波比2,变换线与负载之间连线的长度为lp/12,变换线与负载连线连接处是电压波腹点。试计算:(1) 负载连线上的驻波比;(2) 变换线的特性阻抗Z01;(3) 负载阻抗ZL。
1.10 传输线的特性阻抗Z0=300(),负载阻抗ZL=450+j150(),工作频率f=1(GHz),如利用/4阻抗变换器来实现匹配,试求:(1) 变换线的接入位置lL和特性阻抗Z01;(2) 如将变换线直接接在负载与主传输线之间,则需在负载处并联一短路分支,求短路分支的长度s和变换线的特性阻抗Z01。
解:(1) 变换线的接入位置和特性阻抗
1.11 利用/4阻抗变换器把ZL=100()的负载与特性阻抗Z0=50()的无耗传输线相匹配,当工作频率为f=10(GHz)时,求:(1) /4变换器的特性阻抗Z01和长度l;(2) 能保持驻波比1.25的工作频率范围。
1.12 无耗传输线特性阻抗Z0=75(),通过并联单短路短截线法实现匹配,如图1.5-4所示。已知,负载支路长度为l=p/8,短路短截线支路长度为s=p/8。试求负载阻抗ZL。
1.13 无耗传输线特性阻抗Z0=50(),负载阻抗ZL=20-j90(),通过并联单短路短截线匹配法实现匹配,如图1.5-4所示。试计算负载支路的长度l和短路短截线支路的长度s。
1.14 无耗传输线的特性阻抗Z0=50(),负载阻抗ZL=200+j100(),利用串联单短路短截线进行匹配,如图1.1-5所示。试求:(1) 分支线的接入位置与负载之间的距离l和短路短截线的长度s;(2) 如果负载支路和短路短截线支路的特性阻抗改为Z0=75(),重求l和s。
1.15 如图1.5-6所示,传输线特性阻抗Z0=100(),负载阻抗ZL=80+j60(),通过并联双短路短截线匹配法实现匹配,试计算两个短路短截线支路的长度s1和s2。
1.16 无耗传输线特性阻抗Z0=100(),负载阻抗ZL=50+j50(),通过并联双短路短截线匹配法实现匹配,如图1.5-6所示。试计算两个短路短截线支路的长度s1和s2,并验证匹配结果。
解:先求两个短路短截线的相对电纳
1.17 无耗传输线特性阻抗Z0=60(),负载阻抗
。先判断能否用并联双短路短截线匹配法实现匹配,如若不能,请试用图1.5-7给出的并联三短路短截线匹配法实现匹配。分别计算出三个短路短截线的长度s1、s2和s3,并验证匹配结果。
1.18 如图1.5-8所示,无耗传输线特性阻抗Z0=75(),电源内阻抗ZS=150-j75(),通过单短路短截线实现匹配,电源与分支节点的距离为lS=p/8,短路短截线的长度为s=p/8;负载阻抗ZL=45+j60(),通过1/4波长阻抗变换线实现匹配,变换线与负载连线的长度lL=p/8,变换线特性阻抗为,试证明负载端和电源端实现共轭匹配,主传输线实现行波匹配;计算各段传输线上的驻波系数。
1.19 图1.5-8中无耗传输线特性阻抗Z0=100(),把图中的P点改为负载,负载阻抗ZL=100+j200(),单短路短截线分支点T与负载P的距离不变只是改用lL=0.25p表示;A点改为电源,电源内阻抗为ZS=80+j60(),A、B之间的长度也不变只是改用lS=0.125p表示,短路短截线的长度为
。验证主传输线CT段实现行波匹配,电源端和负载端实现共轭匹配;计算各段
传输线的驻波系数。
2-1 空气同轴线内、外导体的直径分别为d=32mm,D=75mm,求:(1) 该同轴线的特性阻抗Z0;(2) 当其内导体采用r=2.25的介质环支撑(如图示)时,如D不变,则d应为多少才能保证匹配?(3) 该同轴线中不产生高次模的最高工作频率fmax。
解:(1) 该同轴线的特性阻抗
2-2 空气同轴线内、外导体直径分别为d=3cm,D=7cm,当其终端接阻抗为Z0=200的负载时,负载吸收的功率为P=1W,求:(1) 保证同轴线中只传输TEM模的最高工作频率?(2) 线上的驻波比、入射功率及反射功率;(3) 若采用四分之一波长阻抗变换器进行匹配,且D保持不变,则四分之一波长阻抗变换器的内径d应为多少?
2-3 某矩形波导横截面尺寸a=22.86mm,b=10.16mm,波导内填充相对介电常数r=2.1的介质,信号频率f=10GHz,求TE10模的波导波长g10和相速vp10。
2-4 已知某矩形波导横截面尺寸a=22.86mm,b=10.16mm,空气的击穿电场强度为E击穿310^6V/m,工作频率为9.375GHz,求波导中TE10模不引起击穿的最大传输功率是多少?
2-5 已知空气圆波导的直径为5cm,求:(1) TE11、TE01、TM01模的截止波长;(2) 当工作波长分别为7cm,6cm和3cm时,波导中可能存在的模式;(3) 当工作波长为7cm时,主模的波导波长g。
解:几种较低模式的截止波长列表如下
2-6 已知微带线的参数为h=1mm,W=0.34mm,t趋近于0,介电常数=9,求微带线的特性阻抗Z0和有效介电常数e。
2-7 若要求在厚度h=0.8mm,相对介电常数r=9的介质基片上制作特性阻抗分别为50和100的微带线,则它们的导体带条宽度W应为多少?
2-8 一耦合微带线的参数为r=9,h=0.8mm,W=0.8mm,s=0.4mm,求耦合微带线的奇模特性阻抗Z0o和偶模特性阻抗Z0e。
2-9 已知耦合微带线的Z0o=35.7,Z0e=70,介质基片的h=1mm,r=10,求W和s。
解:由教科书第66页表2.9-3(b)可查得,当介质基片的h=1mm,r=10,奇偶模阻抗分别为Z0o=35.7和Z0e=70时,平行耦合微带线横截面相对尺寸应为
3-2 已知波导的宽边尺寸为a=23mm、窄边尺寸为b=10mm,工作波长为32mm,在距离波导口l=20mm处放置了三销钉,销钉直径为r=1mm,其后接匹配负载。问三销钉处的反射系数是多少?波导口处的反射系数是多少?
3-3 某矩形波导的尺寸为ab=2.31.0(cm2),其中装有一谐振窗,信号频率为f=10GHz。试求:(1) 若窗口没有填充介质,且b=0.8cm时,a=7;(2) 若窗口填充磁导率r=1,介电常数r=2的介质,且b=0.8cm时,a=?。
解:由已知条件可知,矩形波导的工作波长为
3-4 试画出图中所示微带电路的等效电路。
解:图中所示微带电路的等效电路如下图所示
4-1 有一矩形谐振腔(b=a/2),已知当f=3GHz时它谐振于模;当f=6GHz时它谐振于模,求此谐振腔的尺寸。
解:由于波导中传输非色散波,由教科书第85页式(4.2-5)可知,非色散播的谐振波长为
4-2 一空气填充的矩形谐振腔尺寸为31.5*4cm3。求:(1) 当它工作于模时的谐振频率;(2) 若在腔中全填充某种介质后,在同一工作频率上它谐振于模,则该介质的相对介质电常数为多少?
解:(1) 当它由空气填充介电常数r=1、工作于模时的谐振频率为
4-3 有一半径为R=3cm,长度分别为l1=6cm和l2=8cm的两个圆柱腔,求它们的最低振荡模的谐振频率。
解:(1) l=l1=6cm时,l<2.1R,最低振荡模式为模,其谐振波长为
4-4 已知圆柱腔的半径为R=1.5cm,对同一频率谐振于模时比模时的腔体的长度多2.32cm,求此谐振频率f0。
4-5 一个半径R=5cm,长l=10cm的圆柱形谐振腔,试求其振荡于最低振荡模时的谐振频率;若腔
体用电导率1.510^7s/m的黄铜制作,试求出其Q0值。(已知)
4-6 如图所示一尺寸为2.31.0cm2的矩形波导传输波,与一半径为R=2.28cm的圆柱形波长计耦合,今测得调谐活塞在相距d=2.5cm的位置Ⅰ、Ⅱ上分别对和模谐振。求:(1) 腔的谐振波长以及波导的工作波长和它相应的波导波长各为多少?(2) 如波导传输的信号波长变为2.08cm,问活塞在I处是否还能谐振?若能,是什么模式?
4-7 设计一个1/4波长同轴腔,要求它的频率覆盖为2.5-3.75GHz,同轴线的特性阻抗Z0=75,已知其内导体外径d=1cm,求腔外导体的内径D及内导体活塞的调谐范围。
解:由同轴线的特性阻抗关系,可求得由空气填充时同轴线外导体的内径
4-8 (书中原题数据不好查表)有一微带圆环谐振器,它的介质基片的r=4.5,h=0.8mm,圆环的平均直径为a*b=25mm,宽度为W=1mm。求该谐振器的谐振频率f0。
4-9 某矩形腔振荡于模,当m点(y=0面中点)和n点(x=a面中点)分别向内微扰v时,试问谐振频率如何变化?