BZOJ 3224/P3369 普通平衡树(Splay)

题目描述

您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:

插入 x 数
删除 x 数(若有多个相同的数,因只删除一个)
查询 x 数的排名(排名定义为比当前数小的数的个数 +1 )
查询排名为 x 的数
求 x 的前驱(前驱定义为小于 x,且最大的数)
求 x 的后继(后继定义为大于 x,且最小的数)

题解:
一个裸的平衡树模板题,我用的Splay,还是在代码里写细节


AC代码:

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 1e5+50;
struct node{ int son[2],fa,val,cnt,sz; }t[MAXN];
int root,tot;
inline void pushup(int rt){
    t[rt].sz = t[t[rt].son[0]].sz+t[t[rt].son[1]].sz+t[rt].cnt;
}
inline int id(int x){ return x==t[t[x].fa].son[1]; }//得到x是它fa的左儿子还是右儿子
inline void rotate(int x){//树旋转
    int y=t[x].fa,z=t[y].fa,k=id(x);
    t[z].son[id(y)]=x, t[x].fa=z;
    t[y].son[k]=t[x].son[k^1],t[t[x].son[k^1]].fa=y;
    t[x].son[k^1]=y,t[y].fa=x;
    pushup(y),pushup(x);
}
inline void splay(int x,int pos){
    while(t[x].fa!=pos){
        int y=t[x].fa,z=t[y].fa;
        if(z!=pos) id(x)==id(y) ? rotate(y):rotate(x);//只要z不是根结点,就双旋
        //然后判断是链还是折线,进行不同结点的旋转
        rotate(x);
    }
    if(!pos) root=x;
}
inline void Find(int x){//在树中找到值为x的结点
    int u=root;
    if(!u) return;
    while(t[u].son[x>t[u].val] && t[u].val!=x) u=t[u].son[x>t[u].val];
    //用x>t[u].val得到的01表示在左子树上还是右子树上
    splay(u,0);//将该结点伸展为根节点
}
inline void Insert(int x){
    int u=root,fa=0;
    while(u && t[u].val!=x) { fa=u,u=t[u].son[x>t[u].val]; }//从跟结点向下找值
    if(u) ++t[u].cnt;//有就增加次数即可
    else{//没有就新建,把信息全部填上
        u=++tot;
        t[u].fa=fa; t[u].val=x;
        t[u].sz = t[u].cnt = 1;
        t[u].son[0]=t[u].son[1]=0;
        if(fa) t[fa].son[x>t[fa].val]=u;
    }
    splay(u,0);//将该结点伸展到根节点
}
inline int kth(int x){
    int u=root;
    if(t[u].sz<x) return 0;//整棵树的总次数比x小,直接返回0表示不存在
    while(1){
        int v=t[u].son[0];
        if(t[v].sz + t[u].cnt<x){//左儿子和它自己出现次数 和 x比较
            x -= t[v].sz + t[u].cnt;//小于则在右子树
            u = t[u].son[1];
        }else if(t[v].sz >= x){//否则左儿子的个数比x大,遍历左子树重复操作即可
            u=v;
        }else return t[u].val;
    }
}
inline int Next(int x,int op){//0表示前驱 和 1表示后继
    Find(x); int u=root;//找到x并且将其伸展到根节点
    if(t[u].val > x && op) return u;
    if(t[u].val < x && !op) return u;//已经是前驱或者后继直接返回
    u=t[u].son[op];//前驱就找左子树,后继右子树
    while(t[u].son[op^1]) u=t[u].son[op^1];
    return u;
}
inline void del(int x){//删除值为x的结点
    int pre=Next(x,0),nxt=Next(x,1);//找到x的前驱和后继
    splay(pre,0),splay(nxt,pre);//将前驱伸展到根节点,后继在它的后子树上
    int u=t[nxt].son[0];
    if(t[u].cnt > 1) { --t[u].cnt; splay(u,0); }//有就直接次数-1,更新sz即可
    else t[nxt].son[0]=0;//否则直接让x成为根节点
}
int main(){
    //freopen("C:\\Users\\Administrator\\Desktop\\in.txt","r",stdin);
    int n; scanf("%d",&n); Insert(1e9),Insert(-1e9);
    while(n--){
        int opt,x; scanf("%d%d",&opt,&x);
        if(opt==1) Insert(x);
        else if(opt==2) del(x);
        else if(opt==3) { Find(x); printf("%d\n",t[t[root].son[0]].sz); }
        else if(opt==4) printf("%d\n",kth(x+1));
        else if(opt==5) printf("%d\n",t[Next(x,0)].val);
        else if(opt==6) printf("%d\n",t[Next(x,1)].val);
    }
    return 0;
}


内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值