题目描述
您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:
插入 x 数
删除 x 数(若有多个相同的数,因只删除一个)
查询 x 数的排名(排名定义为比当前数小的数的个数 +1 )
查询排名为 x 的数
求 x 的前驱(前驱定义为小于 x,且最大的数)
求 x 的后继(后继定义为大于 x,且最小的数)
题解:
一个裸的平衡树模板题,我用的Splay,还是在代码里写细节
AC代码:
#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 1e5+50;
struct node{ int son[2],fa,val,cnt,sz; }t[MAXN];
int root,tot;
inline void pushup(int rt){
t[rt].sz = t[t[rt].son[0]].sz+t[t[rt].son[1]].sz+t[rt].cnt;
}
inline int id(int x){ return x==t[t[x].fa].son[1]; }//得到x是它fa的左儿子还是右儿子
inline void rotate(int x){//树旋转
int y=t[x].fa,z=t[y].fa,k=id(x);
t[z].son[id(y)]=x, t[x].fa=z;
t[y].son[k]=t[x].son[k^1],t[t[x].son[k^1]].fa=y;
t[x].son[k^1]=y,t[y].fa=x;
pushup(y),pushup(x);
}
inline void splay(int x,int pos){
while(t[x].fa!=pos){
int y=t[x].fa,z=t[y].fa;
if(z!=pos) id(x)==id(y) ? rotate(y):rotate(x);//只要z不是根结点,就双旋
//然后判断是链还是折线,进行不同结点的旋转
rotate(x);
}
if(!pos) root=x;
}
inline void Find(int x){//在树中找到值为x的结点
int u=root;
if(!u) return;
while(t[u].son[x>t[u].val] && t[u].val!=x) u=t[u].son[x>t[u].val];
//用x>t[u].val得到的01表示在左子树上还是右子树上
splay(u,0);//将该结点伸展为根节点
}
inline void Insert(int x){
int u=root,fa=0;
while(u && t[u].val!=x) { fa=u,u=t[u].son[x>t[u].val]; }//从跟结点向下找值
if(u) ++t[u].cnt;//有就增加次数即可
else{//没有就新建,把信息全部填上
u=++tot;
t[u].fa=fa; t[u].val=x;
t[u].sz = t[u].cnt = 1;
t[u].son[0]=t[u].son[1]=0;
if(fa) t[fa].son[x>t[fa].val]=u;
}
splay(u,0);//将该结点伸展到根节点
}
inline int kth(int x){
int u=root;
if(t[u].sz<x) return 0;//整棵树的总次数比x小,直接返回0表示不存在
while(1){
int v=t[u].son[0];
if(t[v].sz + t[u].cnt<x){//左儿子和它自己出现次数 和 x比较
x -= t[v].sz + t[u].cnt;//小于则在右子树
u = t[u].son[1];
}else if(t[v].sz >= x){//否则左儿子的个数比x大,遍历左子树重复操作即可
u=v;
}else return t[u].val;
}
}
inline int Next(int x,int op){//0表示前驱 和 1表示后继
Find(x); int u=root;//找到x并且将其伸展到根节点
if(t[u].val > x && op) return u;
if(t[u].val < x && !op) return u;//已经是前驱或者后继直接返回
u=t[u].son[op];//前驱就找左子树,后继右子树
while(t[u].son[op^1]) u=t[u].son[op^1];
return u;
}
inline void del(int x){//删除值为x的结点
int pre=Next(x,0),nxt=Next(x,1);//找到x的前驱和后继
splay(pre,0),splay(nxt,pre);//将前驱伸展到根节点,后继在它的后子树上
int u=t[nxt].son[0];
if(t[u].cnt > 1) { --t[u].cnt; splay(u,0); }//有就直接次数-1,更新sz即可
else t[nxt].son[0]=0;//否则直接让x成为根节点
}
int main(){
//freopen("C:\\Users\\Administrator\\Desktop\\in.txt","r",stdin);
int n; scanf("%d",&n); Insert(1e9),Insert(-1e9);
while(n--){
int opt,x; scanf("%d%d",&opt,&x);
if(opt==1) Insert(x);
else if(opt==2) del(x);
else if(opt==3) { Find(x); printf("%d\n",t[t[root].son[0]].sz); }
else if(opt==4) printf("%d\n",kth(x+1));
else if(opt==5) printf("%d\n",t[Next(x,0)].val);
else if(opt==6) printf("%d\n",t[Next(x,1)].val);
}
return 0;
}