题目描述:
为了简化问题,我们对游戏规则进行了简化和改编:
- 游戏界面是一个长为n,高 为m的二维平面,其中有k个管道(忽略管道的宽度)。
- 小鸟始终在游戏界面内移动。小鸟从游戏界面最左边任意整数高度位置出发,到达游戏界面最右边时,游戏完成。
- 小鸟每个单位时间沿横坐标方向右移的距离为1,竖直移动的距离由玩家控制。如果点击屏幕,小鸟就会上升一定高度X,每个单位时间可以点击多次,效果叠加;如果不点击屏幕,小鸟就会下降一定高度Y。小鸟位于横坐标方向不同位置时,上升的高度X和下降的高度Y可能互不相同。
- 小鸟高度等于0或者小鸟碰到管道时,游戏失败 。小鸟高度为m时,无法再上升。
现在,请你判断是否可以完成游戏。如果可以,输出最少点击屏幕数;否则,输出小鸟最多可以通过多少个管道缝隙。
输入描述:
第1行有3个整数n,m,k,分别表示游戏界面的长度,高度和水管的数量,每两个整数之间用一个空格隔开;
接下来的n行,每行2个用一个空格隔开的整数X和Y,依次表示在横坐标位置0~n-1上玩家点击屏幕后,小鸟在下一位置上升的高度X,以及在这个位置上玩家不点击屏幕时,小鸟在下一位置下降的高度Y。
接下来k行,每行3个整数P,L,H,每两个整数之间用一个空格隔开。每行表示一个管道,其中P表示管道的横坐标,L表示此管道缝隙的下边沿高度为L,H表示管道缝隙上边沿的高度(输入数据保证P各不相同,但不保证按照大小顺序给出)。
输出描述:
第一行,包含一个整数,如果可以成功完成游戏,则输出1,否则输出0。
第二行,包含一个整数,如果第一行为1,则输出成功完成游戏需要最少点击屏幕数,否则,输出小鸟最多可以通过多少个管道缝隙。
题解:
最优解很容易想到DP
设dp[i][j]表示当前再第i列高度为j的最小点击次数
则有: d p [ i ] [ j ] = min ( d p [ i − 1 ] [ j − k ∗ x [ i − 1 ] ] + k ) dp[i][j] = \min(dp[i-1][j-k*x[i-1]]+k) dp[i][j]=min(dp[i−1][j−k∗x[i−1]]+k) 很显然我们还要枚举中间的k,这样我们的程序必然会TLE掉。
考虑用完全背包的思路优化一下转移:
则有: d p [ i ] [ j ] = min ( d p [ i − 1 ] [ j − x [ i − 1 ] ] + 1 , d p [ i ] [ j − x [ i − 1 ] ] + 1 ) dp[i][j] = \min(dp[i-1][j-x[i-1]]+1,dp[i][j-x[i-1]]+1) dp[i][j]=min(dp[i−1][j−x[i−1]]+1,dp[i][j−x[i−1]]+1)
然后特判一下在顶端的时候就好了
AC代码:
#pragma GCC optimize(2)
#include<bits/stdc++.h>
#include<ext/rope>
#define endl '\n'
using namespace std;
using namespace __gnu_cxx;
typedef long long LL;
const int MAXN = 10005;
const int MAXM = 1005;
const int MOD = 1e9+7;
const int INF = 0x3f3f3f3f;
int dp[MAXN][MAXM],x[MAXN],y[MAXN],down[MAXN],up[MAXN];
signed main(){
#ifndef ONLINE_JUEDE
freopen("C:\\Users\\Administrator\\Desktop\\in.txt","r",stdin);
#endif // ONLINE_JUEDE
int n,m,k; scanf("%d%d%d",&n,&m,&k);
for(int i=0;i<n;i++) scanf("%d%d",&x[i],&y[i]);
for(int i=1;i<=n;i++) down[i]=0,up[i]=m+1;
for(int i=0;i<k;i++){
int t,h,d; scanf("%d%d%d",&t,&d,&h);
down[t]=d; up[t]=h;
}
memset(dp,INF,sizeof(dp));
dp[0][0]=INF;
for(int i=1;i<=m;i++) dp[0][i]=0;
for(int i=1;i<=n;i++){
for(int j=x[i-1];j<=m;j++){
dp[i][j]=min(dp[i][j],dp[i-1][j-x[i-1]]+1);
dp[i][j]=min(dp[i][j],dp[i][j-x[i-1]]+1);
if(j==m){
for(int k=j-x[i-1];k<=m;k++){
dp[i][j]=min(dp[i][j],dp[i-1][k]+1);
dp[i][j]=min(dp[i][j],dp[i][k]+1);
}
}
}
for(int j=down[i]+1;j<=up[i]-1;j++)
if(j+y[i-1]<=m)
dp[i][j]=min(dp[i][j],dp[i-1][j+y[i-1]]);
for(int j=1;j<=down[i];j++) dp[i][j]=INF;
for(int j=up[i];j<=m;j++) dp[i][j]=INF;
}
int cnt=k,res=INF;
for(int i=n;i>=1;i--){
for(int j=down[i]+1;j<=up[i]-1;j++)
if(dp[i][j]<INF)
res=min(res,dp[i][j]);
if(res!=INF) break;
if(up[i]<=m) cnt--;
}
if(cnt==k) cout<<1<<endl<<res<<endl;
else cout<<0<<endl<<cnt<<endl;
return 0;
}