贝塞尔曲线参数化曲率公式推导及曲线优化

关于无人车点到点的路径规划,比如避障场景,常采用PH曲线,而贝塞尔曲线作为一种曲率连续的光滑曲线,也很常用,特别是在角点过渡,而特定场景下需要特定曲线形状,因此以关注的曲线的特征值为基,建立目标优化函数,求解得到符合特定要求的曲线。
本文是复现一篇文献的计算过程,但是结果中尚有不一致的情况,仅做参考,详情参考文献。

贝塞尔曲线曲率的公式推导

贝塞尔曲线公式:
在这里插入图片描述
对上式求导,得一阶导数为:
在这里插入图片描述
定义:
在这里插入图片描述
那么一阶导数的形式变为:
在这里插入图片描述
依次类推,二阶导数的形式为:
在这里插入图片描述
对于一般参数曲线P(t),其曲率的计算公式为:
在这里插入图片描述
在文中将曲率公式的形式写成如下:
在这里插入图片描述

1 曲率公式计算实例

下文将分别推导三阶、四阶、五阶贝塞尔曲线的曲率公式,其中从曲率公式的形式来看,主要是计算分母、分子的Bernstein基系数。

1.1 n=3(三阶贝塞尔曲线)曲率公式的推导

1.1.1 分母的Bernstein基系数

在这里插入图片描述
其中Q为:
在这里插入图片描述
在这里插入图片描述
f(t)为C’(t)的平方:
在这里插入图片描述
分别计算以上矩阵,并将相应的式子带入有:
在这里插入图片描述
对于Bernstein基多项式(4次)表达式为:
在这里插入图片描述
整理成以上多项式形式为:
在这里插入图片描述
联立以上两式有,基系数为
在这里插入图片描述

1.1.2 分子的Bernstein基系数

推导g(t)即C’(t)×C’’(t)
在这里插入图片描述
计算有:
在这里插入图片描述
整理化简得:
在这里插入图片描述
因此,三阶贝塞尔曲线的曲率公式已推导出。

1.1.3 三阶贝塞尔曲线图和曲率图

在这里插入图片描述
在这里插入图片描述

1.2 n=4(四阶贝塞尔曲线)曲率公式的推导

1.2.1 分母的Bernstein基系数

在这里插入图片描述
其中Q的表达式为:
在这里插入图片描述
式中的系数为:
在这里插入图片描述
代入上式中计算有:
在这里插入图片描述
对于Bernstein基多项式(6次)表达式为:
在这里插入图片描述
整理成以上多项式形式为:
在这里插入图片描述
其中,
在这里插入图片描述

1.2.2 分子的Bernstein基系数

再推导g(t)即C’(t)×C’’(t)
在这里插入图片描述
原式整理有:
在这里插入图片描述
化简为Bernstein基多项式(4次)表达式为:
在这里插入图片描述
则根据以上的推导,得到四阶贝塞尔曲线的曲率公式。

1.2.3 四阶贝塞尔曲线图和曲率图

在这里插入图片描述

在这里插入图片描述

1.3 n=5(五阶贝塞尔曲线)曲率公式的推导

1.3.1 分母的Bernstein基系数

在这里插入图片描述
已知条件:
在这里插入图片描述
于是Q有:
在这里插入图片描述
相应的系数为:
在这里插入图片描述
在这里插入图片描述
将相应的矩阵计算式代入上式中,
对于Bernstein基多项式(8次)表达式为:
在这里插入图片描述
整理成以上多项式形式为:
在这里插入图片描述
其中,
在这里插入图片描述

1.3.2 分子的Bernstein基系数

再推导g(t)即C’(t)×C’’(t)
在这里插入图片描述
原式整理有:
在这里插入图片描述
化简为Bernstein基多项式(6次)表达式为
在这里插入图片描述
其中,
在这里插入图片描述

1.3.3 五阶贝塞尔曲线图和曲率图

在这里插入图片描述
在这里插入图片描述

2 曲线优化目标函数

本文中关注曲线的3个特征值:
(1)中点处的曲率值;

在这里插入图片描述
(2)中点处的角偏差;
在这里插入图片描述
(3)曲线的速度。
在这里插入图片描述
给三个特征值分配不同的权重,建立目标函数为:
在这里插入图片描述
其中,有
在这里插入图片描述

2.1 计算实例

2.1.1 三次贝塞尔曲线

在这里插入图片描述
(1)取a=0,b=0时,
在这里插入图片描述
先计算得到最优λ为0.4751,f=1.0174e(-5),再带入公式中求得其他值。
(2)取a=0.1,b=0时,
在这里插入图片描述
先计算得到最优λ为0.3295,f=0.1109,再带入公式求其他值。
(3)取a=0.4,b=0时,
在这里插入图片描述
先计算得到最优λ为0.0001,f=0.2651,再带入公式求其他值。
(4)取a=0,b=0.1时,
在这里插入图片描述
先计算得到最优λ为0.6336,f=0.0652,再带入公式求其他值。
(5)取a = 0.8 , b = 0.2时,
在这里插入图片描述
先计算得到最优λ为0.2611,f=1.0834,再带入公式求其他值。
以上算例的曲线图和曲率图绘制如下。
在这里插入图片描述
在这里插入图片描述

2.1.2 四次贝塞尔曲线

在这里插入图片描述
(1)取a=0,b=0时,
在这里插入图片描述
先计算得到最优λ为0.6237,f=0.0013847,再带入公式求其他值。
(2)取a=0.2,b=0时,
在这里插入图片描述
先计算得到最优λ为0.4706,f=0.1611,再带入公式求其他值。

(3)取a=0.4,b=0时,
在这里插入图片描述
先计算得到最优λ为0.0925,f=0.2588,再带入公式求其他值。
(4)a = 0 , b = 0.2时,
在这里插入图片描述
(5)a = 0.9 , b = 0.1时,
在这里插入图片描述
先计算得到最优λ为0.3327,f=0.8695,再带入公式求其他值。
以上算例的曲线图和曲率图绘制如下。
在这里插入图片描述
n=4算例曲率图

2.1.3 五次贝塞尔曲线

在这里插入图片描述
上式的计算与原文中有出入,暂没找出问题所在,仅作参考。
算例计算过程如上,相应的曲线图和曲率图如下绘制。
在这里插入图片描述
在这里插入图片描述
参考文献 Optimization of Corner Blending Curves

<think>好的,用户想了解什么是圆弧补间运动。首先,我需要回忆这个概念的相关知识。圆弧补间应该属于运动控制或机器人路径规划的范畴,可能涉及插补算法。补间运动一般指在两点之间生成中间路径,比如直线或曲线。圆弧补间应该是在两点间生成圆弧路径。 接下来,要确定用户可能的背景。可能是学生、工程师或对机器人控制感兴趣的人。他们可能需要基本概念和应用场景的解释,不需要太深的数学推导,但也不能太过简略。 需要明确几个点:什么是补间运动,圆弧补间的定义,如何实现,数学原理,应用领域,优缺点。同时注意用户提到的系统级指令,比如正确使用LaTeX,行内公式用$...$,独立公式用$$...$$并单独成段。确保不出现语法错误。 可能涉及到的数学包括圆弧的参数方程、插值计算。例如,在笛卡尔坐标系中,圆弧可以用参数方程表示,或者使用圆心、半径、起始角和终止角来描述。需要说明如何通过插补算法在离散的时间点生成中间点,保持连续和平滑。 应用方面,数控机床、工业机器人、绘图仪等需要精确路径控制的设备会用到圆弧补间。比如机械臂在两点间沿圆弧移动,避免急转弯,保证运动平稳。 还要考虑可能的相关概念,比如直线补间,与之对比突出圆弧补间的特点和适用情况。例如,直线补间简单但路径可能不够平滑,圆弧适用于需要曲线路径的场景。 需要检查是否有遗漏的关键点,比如插补算法的类型(如逐点比较法、数字积分法等),或者实际实现中的挑战,如计算量、精度问题。但用户的问题比较基础,可能不需要深入到算法细节,保持简洁明了即可。 最后,确保用中文口语化表达,避免过于技术化的术语,但必要时正确使用术语。结构清晰,分点说明,帮助用户逐步理解。同时注意LaTeX格式的正确应用,例如圆弧的方程用$...$包裹,独立公式用$$...$$。</think>圆弧补间运动是运动控制中的一种路径规划方法,主要用于在已知起点和终点的情况下,通过圆弧轨迹连接两个点,并生成中间过渡点。以下分步骤解释: 1. **基本概念** - **补间(Tweening)**:源自"in-between",指在起始点与目标点之间自动插入中间点。 - **圆弧补间**:特指以圆弧曲线(而非直线)作为插补路径,满足对曲线运动的需求。 2. **数学实现原理** - 给定起点$P_0(x_0,y_0)$、终点$P_1(x_1,y_1)$和圆心$C(h,k)$,通过参数方程描述圆弧: $$x = h + r\cos\theta$$ $$y = k + r\sin\theta$$ 其中$r$为半径,$\theta$为角度参数。 - 插补算法会按时间步长计算角度增量$\Delta\theta$,生成离散路径点。 3. **关键技术特点** - **平滑性**:圆弧曲率恒定,避免运动中的加速度突变 - **精度控制**:通过细分圆弧段减少拟合误差 - **参数计算**:需要同时确定圆心、半径和扫掠角 *示例约束方程*: $$(x_0-h)^2 + (y_0-k)^2 = r^2$$ $$(x_1-h)^2 + (y_1-k)^2 = r^2$$ 4. **典型应用场景** - 工业机器人焊接路径 - CNC机床的曲面加工 - 绘图仪绘制曲线图形 - AGV小车的避障路径规划 5. **与直线补间的对比** | 特性 | 圆弧补间 | 直线补间 | |-------------|--------------------------|------------------| | 路径形状 | 曲线 | 直线 | | 加速度 | 连续变化 | 阶跃变化 | | 计算复杂度 | 较高(需解非线性方程) | 较低 | | 适用场景 | 曲面加工、平滑运动 | 简单定位 | 6. **实现挑战** - **奇异点处理**:当三点共线时无法确定唯一圆弧 - **动态调整**:实时修改路径时的连续性保证 - **多轴同步**:协调各关节电机的转角速度匹配 实际系统中常采用$G02/G03$指令(数控编程)或贝塞尔曲线逼近来实现更复杂的曲线运动。理解圆弧补间对优化运动系统的效率、精度和能耗均有重要意义。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值