高斯K阶矩计算


一、计算 E ( x k ) E(x^k) E(xk)

高斯概率密度函数(PDF)为
f ( x ) = 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) f(x)=2π σ1exp(2σ2(xμ)2)

E ( x k ) E(x^k) E(xk) X X X k k k阶中心矩,
E ( X k ) = ∫ − ∞ ∞ x k f ( x ) d x = 1 2 π σ ∫ − ∞ ∞ x k exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) d x \begin{aligned} E\left(X^{k}\right)&=\int_{-\infty}^{\infty} x^{k} f(x) \mathrm{d} x \\ &=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} x^{k} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \mathrm{d} x \\ \end{aligned} E(Xk)=xkf(x)dx=2π σ1xkexp(2σ2(xμ)2)dx
μ = 0 \mu=0 μ=0时,
E ( X k ) = 1 2 π σ ∫ − ∞ ∞ x k exp ⁡ ( − x 2 2 σ 2 ) d x = σ k 2 π σ ⋅ ∫ − ∞ + ∞ ( x σ ) k ⋅ exp ⁡ ( − 1 2 ( x σ ) 2 ) d x = σ k 2 π ∫ − ∞ + ∞ u k exp ⁡ ( − u 2 2 ) d u \begin{aligned} E\left(X^{k}\right) &=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} x^{k} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) \mathrm{d} x \\ &=\frac{\sigma^{k}}{\sqrt{2 \pi} \sigma} \cdot \int_{-\infty}^{+\infty} \left(\frac{x}{\sigma}\right)^{k} \cdot \exp \left(-\frac{1}{2}\left(\frac{x}{\sigma}\right)^{2}\right) d x \\ &=\frac{\sigma^{k}}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} u^{k} \exp \left(-\frac{u^{2}}{2}\right) d u \end{aligned} E(Xk)=2π σ1xkexp(2σ2x2)dx=2π σσk+(σx)kexp(21(σx)2)dx=2π σk+ukexp(2u2)du

  1. k = 奇 数 k=奇数 k= 时, E ( X k ) = 0 E\left(X^{k}\right)=0 E(Xk)=0
  2. k = 偶 数 k=偶数 k= 时, E ( X k ) = 2 π σ k ∫ 0 + ∞ u k exp ⁡ ( − u 2 2 ) d u = 2 π σ k ∫ 0 + ∞ ( 2 x ) k − 1 e − x d x = ( 2 ) k π σ k ∫ 0 + ∞ x ( k + 1 2 − 1 ) e − x d x = ( 2 σ ) k π Γ ( k + 1 2 ) = 1 ⋅ 3 ⋅ 5 ⋯ ( k − 1 ) σ k \begin{aligned} E\left(X^{k}\right)&=\sqrt{\frac{2}{\pi}} \sigma^{k} \int_{0}^{+\infty} u^{k} \exp \left(-\frac{u^{2}}{2}\right) d u \\ &=\sqrt{\frac{2}{\pi}} \sigma^{k} \int_{0}^{+\infty}(\sqrt{2 x})^{k-1} e^{-x} d x \\ &=\frac{(\sqrt{2})^{k}}{\sqrt{\pi}} \sigma^{k} \int_{0}^{+\infty} x^{\left(\frac{k+1}{2}-1\right)} e^{-x} d x \\ &=\frac{(\sqrt{2} \sigma)^{k}}{\sqrt{\pi}} \Gamma\left(\frac{k+1}{2}\right)\\ &=1 \cdot 3 \cdot 5 \cdots(k-1)\sigma^{k} \end{aligned} E(Xk)=π2 σk0+ukexp(2u2)du=π2 σk0+(2x )k1exdx=π (2 )kσk0+x(2k+11)exdx=π (2 σ)kΓ(2k+1)=135(k1)σk

μ ≠ 0 \mu\neq0 μ=0时,(不会算)

E [ ( x + μ ) k ] = ∑ i = 0 k ( k i ) E ( x i ) μ k − i E\left[(x+\mu)^{k}\right]=\sum_{i=0}^{k}\left(\begin{array}{l} k \\ i \end{array}\right) E\left(x^{i}\right) \mu^{k-i} E[(x+μ)k]=i=0k(ki)E(xi)μki


一、计算 E [ ( x − μ ) k ] E[(x-\mu)^k] E[(xμ)k]

(不会算)

E [ ( x − μ ) k ] E[(x-\mu)^k] E[(xμ)k] X X X k k k阶中心矩,
E ( X − E ( X ) ) k = E ( X − μ ) k = ∑ i = 0 k ( k i ) E ( x i ) ( − μ ) k − i , E(X-E(X))^{k}=E\left(X-\mu\right)^{k}=\sum_{i=0}^{k}\left(\begin{array}{l} k \\ i \end{array}\right) E\left(x^{i}\right) \left(-\mu\right)^{k-i}, E(XE(X))k=E(Xμ)k=i=0k(ki)E(xi)(μ)ki,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值