自动求导实现

自动求导实现

import torch

# 自动求导  假设我们相对函数y=2X^T*X 关于列向量X 求导

x = torch.arange(4.0)
print(x)

# 在我们计算y关于x的梯度之前,我们需要一个地方来存储梯度
x.requires_grad_(True)  # 等价与x = torch.arange(4.0, requires_grad=True)
print(x.grad)  # 默认值是None  将梯度存放在grad中

# 现在计算y
y = 2 * torch.dot(x, x)  # 点积
print(y)

# 通过调用反向传播函数来自动计算y关于x每个分量的梯度
y.backward()  # 求导
print(x.grad)

# y = 2x^2 求导为4x
print(x.grad == 4 * x)

# 在默认情况下,PyTorch会累积梯度,我们需要清除之前的值
x.grad.zero_()  # 将x的梯度清零
y = x.sum()  # 等于y = x1 + x2 + x3
y.backward()
print(x.grad)

# 深度学习中,我们的目标不是计算微分矩阵,而是批量中每个样本单独计算的偏导数之和
# 对非标量调用backward需要传入一个gradient参数,该参数指定微分函数关于self的梯度。
x.grad.zero_()
y = x * x
# 等价与y.backward(torch.ones(len(x)))
y.sum().backward()
print(x.grad)

# 将某些计算移动到记录的计算图之外
x.grad.zero_()
y = x * x
u = y.detach()  # 将y分离,从张量变成一个常数 u的值将不会随x的变化而变化
z = u * x
z.sum().backward()
print(x.grad == u)

# 这时候还是可以使用y对x求导
x.grad.zero_()
y.sum().backward()
print(x.grad == 2 * x)


# 即使构建函数的计算图需要通过Python控制流(例如,条件、循环或任意函数调用),我们任然可以计算得到的变量的梯度
def f(a):
    b = a * 2
    while b.norm() < 1000:  # 计算该向量的欧几里得范数(2范数),也就是向量中所有元素的平方和的平方根。
        b = b * 2
    if b.sum() > 0:
        c = b
    else:
        c = 100 * b
    return c


# 我们现在可以分析上面定义的f函数。
# 请注意,它在其输入a中是分段线性的。
# 换言之,对于任何a,存在某个常量标量k,使得f(a)=k*a,
# 其中k的值取决于输入a,因此可以用d/a验证梯度是否正确。

a = torch.randn(size=(), requires_grad=True)  # 一个随机数
d = f(a)
d.backward()  # 反向传播 即求导
print(a.grad == d / a)

输出

tensor([0., 1., 2., 3.])
None
tensor(28., grad_fn=<MulBackward0>)
tensor([ 0.,  4.,  8., 12.])
tensor([True, True, True, True])
tensor([1., 1., 1., 1.])
tensor([0., 2., 4., 6.])
tensor([True, True, True, True])
tensor([True, True, True, True])
tensor(True)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值