好题荟萃

好题荟萃

例题1

已 知 f ( x y ) = y f ( x ) + x f ( y ) 对 于 任 意 的 正 数 x , y 均 成 立 , 且 f ′ ( 1 ) = e , 则 f ( x y ) 的 极 小 值 为 ( ) 已知f(xy) = yf(x)+xf(y)对于任意的正数x,y均成立, 且f'(1)=e, 则f(xy)的极小值为() f(xy)=yf(x)+xf(y)x,y,f(1)=e,f(xy)()

分析

1. 求 f ( x y ) 的 极 小 值 , 实 际 上 就 是 求 f ( x ) 的 极 小 值 , 故 意 使 用 f ( x y ) 来 忽 悠 人   2. 要 求 极 小 值 , 必 然 使 用 求 极 值 的 工 具 − 导 数   3. 又 因 为 是 抽 象 函 数 , 所 以 只 能 使 用 导 数 定 义   4. 因 为 是 抽 象 函 数 , 代 入 一 个 特 殊 值 求 得 某 个 特 殊 点 的 函 数 值 f ( x 0 ) 1. 求f(xy)的极小值, 实际上就是求f(x)的极小值,故意使用f(xy)来忽悠人\\\ \\ 2. 要求极小值, 必然使用求极值的工具-导数\\\ \\3.又因为是抽象函数,所以只能使用导数定义\\\ \\4.因为是抽象函数,代入一个特殊值求得某个特殊点的函数值f(x_0) 1.f(xy),f(x),使f(xy) 2.,使 3.,使 4.,f(x0)

1. 令 y = 1 , 得 f ( x ) = f ( x ) + x f ( 1 ) , 解 得 f ( 1 ) = 0   2. f ′ ( x ) = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x   = 缺 啥 补 啥 , 往 抽 象 函 数 方 向 凑 乘 积 lim ⁡ Δ x → 0 f ( x ( 1 + Δ x x ) ) − f ( x ) Δ x   = lim ⁡ Δ x → 0 ( f ( x ) x + f ( 1 + Δ x x ) Δ x x )   = lim ⁡ Δ x → 0 ( f ( x ) x + f ′ ( 1 ) )   3. 解 微 分 方 程 y ′ = y x + e 求 出 y = e ∗ x ∗ I n x 1. 令y=1,得f(x)=f(x)+xf(1),解得f(1)=0\\\ \\2. f'(x) = \lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\\\ \\ \xlongequal{缺啥补啥, 往抽象函数方向凑乘积} \lim_{\Delta x \to 0}\frac{f(x(1+\frac{\Delta x}{x}))-f(x)}{\Delta x}\\\ \\=\lim_{\Delta x \to 0}(\frac{f(x)}{x} + \frac{f(1+\frac{\Delta x}{x})}{\frac{\Delta x}{x}})\\\ \\=\lim_{\Delta x \to 0}(\frac{f(x)}{x} + f'(1))\\\ \\3.解微分方程y' = \frac{y}{x} + e求出y=e*x*Inx 1.y=1,f(x)=f(x)+xf(1),f(1)=0 2.f(x)=limΔx0Δxf(x+Δx)f(x) , limΔx0Δxf(x(1+xΔx))f(x) =limΔx0(xf(x)+xΔxf(1+xΔx)) =limΔx0(xf(x)+f(1)) 3.y=xy+ey=exInx

例题2

设 F ( x ) = x 2 3 ∗ s i n x , 求 F ′ ( x ) 设F(x) = x^{\frac{2}{3}}*sinx, 求F'(x) F(x)=x32sinx,F(x)

分析

设 F ( x ) = x 2 3 ∗ s i n x 是 一 个 绝 对 值 函 数 g ( x ) = x 2 3 和 f ( x ) = s i n x 的 乘 积 , 即 F ( x ) = g ( x ) ∗ f ( x )   对 于 绝 对 值 函 数 g ( x ) = x 2 3 而 言 , 在 g ( x ) = 0 处 不 可 导 , 即 x = 0 处 不 可 导   但 是 对 于 F ( x ) = x 2 3 ∗ s i n x 而 言 , x = 0 只 是 一 个 可 疑 的 不 可 导 点 , 而 在 f ( x ) = 0 处 必 定 可 导   导 数 公 式 的 四 则 运 算 条 件 的 使 用 前 提 条 件 : f ′ ( x ) 和 g ′ ( x ) 均 要 存 在   问 题 出 现 在 F ( x ) 在 x = 0 处 是 可 导 , 但 g ′ ( x ) 在 x = 0 处 并 不 存 在 , 所 以 不 能 使 用 导 数 的 四 则 运 算 设F(x) = x^{\frac{2}{3}}*sinx是一个绝对值函数g(x) = x^{\frac{2}{3}}和f(x) = sinx的乘积,即F(x) = g(x)*f(x)\\\ \\ 对于绝对值函数g(x) = x^{\frac{2}{3}}而言,在g(x) = 0处不可导, 即x=0处不可导\\\ \\但是对于F(x) = x^{\frac{2}{3}}*sinx而言,x=0只是一个可疑的不可导点, 而在f(x)=0处必定可导\\\ \\导数公式的四则运算条件的使用前提条件: f'(x)和g'(x)均要存在\\\ \\问题出现在F(x)在x=0处是可导,但g'(x)在x=0处并不存在,所以不能使用导数的四则运算 F(x)=x32sinxg(x)=x32f(x)=sinx,F(x)=g(x)f(x) g(x)=x32,g(x)=0,x=0 F(x)=x32sinx,x=0,f(x)=0 使:f(x)g(x) F(x)x=0,g(x)x=0,使

该题不在于难度, 而是得出一个结论:
直 接 使 用 求 导 公 式 得 到 的 f ′ ( x ) 并 不 能 代 表 f ( x ) 的 全 部 导 函 数 直接使用求导公式得到的f'(x)并不能代表f(x)的全部导函数 使f(x)f(x)
在该题中, 求导后 f ′ ( x ) f'(x) f(x) 的定义域为 { x ∣ x ≠ 0 } \{x|x \neq 0\} {xx=0}, 所以需要使用导数定义对 x = 0 x=0 x=0处的点进行检验

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值