在介绍三角函数定积分计算之前,,, 首先介绍一些有关函数对称性的基础知识
结论一:对于复合函数f[u(x)],如果内层函数u(x)关于区间[a,b]对称,则f[u(x)]关于[a,b]对称结论一: 对于复合函数f[u(x)], 如果内层函数u(x)关于区间[a,b]对称, 则f[u(x)]关于[a,b]对称结论一:对于复合函数f[u(x)],如果内层函数u(x)关于区间[a,b]对称,则f[u(x)]关于[a,b]对称
证明:
因为u(x)u(x)u(x)关于[a,b][a,b][a,b]对称,,, 所以u(x)=u(2∗a+b2−x)=u(a+b−x)u(x) =u(2*\frac{a+b}{2}-x)=u(a + b-x)u(x)=u(2∗2a+b−x)=u(a+b−x)
令F(x)=f[u(x)],F(x) = f[u(x)],F(x)=f[u(x)], 则F(a+b−x)=f[u(a+b−x)]=f[u(x)]=F(x)F(a+b-x) = f[u(a+b-x)]=f[u(x)]=F(x)F(a+b−x)=f[u(a+b−x)]=f[u(x)]=F(x)
故F(x)F(x)F(x)关于区间[a,b][a,b][a,b]对称
结论二:如果u(x)关于区间[a,b]中心对称,则f[u(x)]的对称性和外层函数f(x)的奇偶性保持一致结论二: 如果u(x)关于区间[a,b]中心对称, 则f[u(x)]的对称性和外层函数f(x)的奇偶性保持一致结论二:如果u(x)关于区间[a,b]中心对称,则f[u(x)]的对称性和外层函数f(x)的奇偶性保持一致
值得注意的是: 这里要求的是内层函数关于积分区间中心对称,,, 而外层函数不是关于积分区间的对称性而是奇偶性
证明
u(a+b−x)=−u(x)u(a+b-x)=-u(x)u(a+b−x)=−u(x)
F(a+b−x)=f[u(a+b−x)]=f[−u(x)]F(a+b-x) = f[u(a+b-x)]=f[-u(x)]F(a+b−x)=f[u(a+b−x)]=f[−u(x)]
当f(x)f(x)f(x)为偶函数时,,, F(a+b−x)=f[−u(x)]=f[u(x)]=F(x),F(a+b-x)=f[-u(x)]=f[u(x)]=F(x),F(a+b−x)=f[−u(x)]=f[u(x)]=F(x), 即F(x)F(x)F(x)关于[a,b][a,b][a,b]对称
当f(x)f(x)f(x)为奇函数时,,, F(a+b−x)=f[−u(x)]=−f[u(x)]=−F(x),F(a+b-x)=f[-u(x)]=-f[u(x)]=-F(x),F(a+b−x)=f[−u(x)]=−f[u(x)]=−F(x), 即F(x)F(x)F(x)关于[a,b][a,b][a,b]中心对称
结论三:f(x)关于区间[a,b]对称,则∫abf(x)dx=2∫aa+b2f(x)dx结论三: f(x)关于区间[a,b]对称, 则\int_a^bf(x)dx=2\int_a^{\frac{a+b}{2}}f(x)dx结论三:f(x)关于区间[a,b]对称,则∫abf(x)dx=2∫a2a+bf(x)dx
结论四:f(x)关于区间[a,b]中心对称,则∫abf(x)dx=0结论四: f(x)关于区间[a,b]中心对称, 则\int_a^bf(x)dx=0结论四:f(x)关于区间[a,b]中心对称,则∫abf(x)dx=0
结论五:在三角函数的积分计算和证明中,常令x=π2±u或x=π±u结论五: 在三角函数的积分计算和证明中, 常令x=\frac{\pi}{2}\pm u或x=\pi \pm u结论五:在三角函数的积分计算和证明中,常令x=2π±u或x=π±u
结论六:有根号且根号内有平方的,一般使用三角换元结论六:有根号且根号内有平方的, 一般使用三角换元结论六:有根号且根号内有平方的,一般使用三角换元
下面开始正式介绍有关定积分计算的方法
1. 区间再现公式
∫abf(x)dx=∫abf(a+b−x)dx=12∫ab[f(a+b−x)+f(x)]dx=∫aa+b2[f(a+b−x)+f(x)]dx\int_a^bf(x)dx = \int_a^bf(a+b-x)dx = \frac{1}{2} \int_a^b[f(a+b-x) + f(x)]dx = \int_a^{\frac{a+b}{2}}[f(a+b-x) + f(x)]dx∫abf(x)dx=∫abf(a+b−x)dx=21∫ab[f(a+b−x)+f(x)]dx=∫a2a+b[f(a+b−x)+f(x)]dx
证明:
换元换变元,,, 令u=a+b−xu=a+b-xu=a+b−x
∫abf(x)dx=∫baf(a+b−u)d(−u)=∫abf(a+b−u)du=定积分与变元符号无关∫abf(a+b−x)dx\int_a^bf(x)dx = \int_b^af(a+b-u)d(-u)=\int_a^bf(a+b-u)du \xlongequal{定积分与变元符号无关}\int_a^bf(a+b-x)dx∫abf(x)dx=∫baf(a+b−u)d(−u)=∫abf(a+b−u)du定积分与变元符号无关∫abf(a+b−x)dx
令F(x)=f(a+b−x)+f(x),F(x) = f(a+b-x) + f(x),F(x)=f(a+b−x)+f(x), 可以得到F(x)F(x)F(x)关于[a,b][a,b][a,b]对称,,, 故12∫abF(x)dx=∫aa+b2F(x)dx\frac{1}{2} \int_a^bF(x)dx = \int_a^{\frac{a+b}{2}}F(x)dx21∫abF(x)dx=∫a2a+bF(x)dx
根据区间再现的思想,,, 其实也可以得到一些其他的区间再现公式.
例如令u=abx,u=\frac{ab}{x},u=xab, 则有∫abf(x)dx=∫baf(abu)d(abu),\int_a^bf(x)dx = \int_b^af(\frac{ab}{u})d(\frac{ab}{u}),∫abf(x)dx=∫baf(uab)d(uab), 之前在一本复习书中看到过,,, 但实际做题没怎么遇到过这种情况
计算:∫0π4xcos(π4−x)∗cosxdx: \int_0^\frac{\pi}{4}\frac{x}{cos(\frac{\pi}{4}-x)*cosx}dx:∫04πcos(4π−x)∗cosxxdx
已知f(x)f(x)f(x)连续,,, 证明重要推论 :::
∫0π2f(sinx)dx=∫0π2f(cosx)dx\int_0^{\frac{\pi}{2}}f(sinx)dx= \int_0^{\frac{\pi}{2}}f(cosx)dx∫02πf(sinx)dx=∫02πf(cosx)dx
∫0πxf(sinx)dx=π2∫0πf(sinx)dx=区间拆分+结论五π∫0π2f(sinx)dx\int_0^{\pi}xf(sinx)dx=\frac{\pi}{2} \int_0^{\pi}f(sinx)dx\xlongequal{区间拆分+结论五}\pi\int_0^{\frac{\pi}{2}}f(sinx)dx∫0πxf(sinx)dx=2π∫0πf(sinx)dx区间拆分+结论五π∫02πf(sinx)dx
∫0π2f(sinx,cosx)dx=∫0π2f(cosx,sinx)dx\int_0^{\frac{\pi}{2}}f(sinx,cosx)dx=\int_0^{\frac{\pi}{2}}f(cosx,sinx)dx∫02πf(sinx,cosx)dx=∫02πf(cosx,sinx)dx这个公式说明在区间[0,π2][0,\frac{\pi}{2}][0,2π]上cosxcosxcosx和sinxsinxsinx对换不改变定积分的值
2. 点火公式
点火公式大家都非常熟练了,,, 这里直接介绍它的几个衍生版本,,, 当做熟悉对称性的使用
∫0πsinnxdx:\int_0^{\pi}sin^nxdx:∫0πsinnxdx:复合函数由内层sinxsinxsinx和外层xn.x^n.xn. 且内层函数sinxsinxsinx在积分区间[0,π][0,\pi][0,π]上对称,,, 故可由结论一和结论三化简
∫0πcosnxdx:\int_0^{\pi}cos^nxdx:∫0πcosnxdx:复合函数由内层cosxcosxcosx和外层xn.x^n.xn. 且内层函数cosxcosxcosx在积分区间[0,π][0,\pi][0,π]上中心对称,,, 故需要判断xnx^nxn的奇偶性

3.区间简化公式
-
将任意区间[a,b][a,b][a,b]化简为[0,1][0,1][0,1]
其实原理就是找到一个单调函数x=f(t),x=f(t),x=f(t), 使得f(0)=a,f(1)=bf(0)=a, f(1)=bf(0)=a,f(1)=b
类比通过两点(a,0),(b,1)(a,0),(b,1)(a,0),(b,1)建立直线方程,,, 得到公式x−ab−a=t−01−0,\frac{x-a}{b-a} = \frac{t-0}{1-0},b−ax−a=1−0t−0,即x=a+(b−a)∗tx=a+(b-a)*tx=a+(b−a)∗t
计算:∫ab(x−a)(b−x)dx=(b−a)28π计算:\int_a^b \sqrt{(x-a)(b-x)}dx=\frac{(b-a)^2}{8}\pi计算:∫ab(x−a)(b−x)dx=8(b−a)2π
-
将任意区间[a,b][a,b][a,b]化简为[−π2,π2][-\frac{\pi}{2},\frac{\pi}{2}][−2π,2π]
类似上面的方法得到x−ab−a=t+π2π,\frac{x-a}{b-a} = \frac{t+\frac{\pi}{2}}{\pi},b−ax−a=πt+2π, 化简后得到x=a+b2+b−a22πtx=\frac{a+b}{2}+\frac{b-a}{2}\frac{2}{\pi}tx=2a+b+2b−aπ2t
我们知道有根号且根号内有平方的,,,一般使用三角换元,,,例如∫a2±x2dx\int\sqrt{a^2\pm x^2}dx∫a2±x2dx和∫1a2±x2dx,\int\frac{1}{\sqrt{a^2\pm x^2}}dx,∫a2±x21dx, 因此使用sintsintsint替换t,t,t,但二者在[−π2,π2][-\frac{\pi}{2},\frac{\pi}{2}][−2π,2π]上表示的范围并不相等,,, 因此需要乘上系数kkk保证二者范围相同. 而在[−π2,π2][-\frac{\pi}{2},\frac{\pi}{2}][−2π,2π]上sint的范围恰好是2πt\frac{2}{\pi}tπ2t的范围,,, 因此公式变为x=a+b2+b−a2sintx=\frac{a+b}{2}+\frac{b-a}{2}sintx=2a+b+2b−asint其实公式1的简化最后还是用到了三角换元,,, 只是因为基本积分公式里面有∫a2−x2dx,\int\sqrt{a^2- x^2}dx,∫a2−x2dx, 所以使用ttt即可
计算:∫ab1(x−a)(b−x)dx=π计算: \int_a^b\frac{1}{ \sqrt{(x-a)(b-x)}}dx=\pi计算:∫ab(x−a)(b−x)1dx=π
4.其他有关对称性的积分
F(x)=(x−a)(x+a)为偶函数;F(x) = (x-a)(x+a)为偶函数;F(x)=(x−a)(x+a)为偶函数;
根据偶函数∗偶函数=偶函数,偶函数∗奇函数=奇函数,可以推广如下形式:根据偶函数*偶函数=偶函数, 偶函数*奇函数=奇函数, 可以推广如下形式:根据偶函数∗偶函数=偶函数,偶函数∗奇函数=奇函数,可以推广如下形式:
F(x)=∏i=1N(x−i)(x+i)为偶函数,G(x)=∏i=1N(x−i)(x+i)x为奇函数,给出几个相关的函数图像F(x) =\prod_{i=1}^N(x-i)(x+i)为偶函数, G(x) =\prod_{i=1}^N(x-i)(x+i)x为奇函数, 给出几个相关的函数图像F(x)=∏i=1N(x−i)(x+i)为偶函数,G(x)=∏i=1N(x−i)(x+i)x为奇函数,给出几个相关的函数图像
奇函数

偶函数

将其整体向左平移,,, 函数可能会变成F(x)=x(x+1)(x+2)(x+3)(x+4),F(x) = x(x+1)(x+2)(x+3)(x+4),F(x)=x(x+1)(x+2)(x+3)(x+4), 此时为关于x=−2x=-2x=−2中心对称的函数

3949

被折叠的 条评论
为什么被折叠?



