day38

Day38 —— Dijkstra and Prim

1. Background

今天学习的是,Dijkstra算法和prim算法,这两个算法是数据结构里面最经典的算法。

Dijkstra算法是求一个图中一个点到其他所有点的最短路径的算法。

Prim算法是查找连通网中的最小生成树。

2. Description

2.1 Dijkstra

Dijkstra 算法是一个基于「贪心」、「广度优先搜索」、「动态规划」求一个图中一个点到其他所有点的最短路径的算法,时间复杂度 O(n2)。

每次从 「未求出最短路径的点」中 取出 距离距离起点 最小路径的点,以这个点为桥梁 刷新「未求出最短路径的点」的距离

我们以老师的测试数据为例
t e m p M a t r i x 1 = [ 0 9 3 6 5 0 2 4 3 2 0 1 2 8 7 0 ] tempMatrix1 = \begin{bmatrix} 0 & 9 & 3 & 6 \\ 5 & 0 & 2 & 4 \\ 3 & 2 & 0 & 1 \\ 2 & 8 & 7 & 0 \\ \end{bmatrix} tempMatrix1=0532902832076410
在这里插入图片描述

如果是从0节点开始,那么把tempVisitedArray[0]改为true,再找到它所有的出度所链接的节点。图中可以看到,有1,2,3。然后在其中找权值最小的一条线,也就是比较tempDistanceArrayde 值,并储存。在寻找期间需要不断的回溯,确保最后的结果是最短路径。后面的步骤就是重复之前的操作。

0 ----> 2 : 3

0 ----> 2 ---->3 : 3 + 1 = 4

0 ----> 2 ----> 1 : 3 + 2= 5

2.2 Prim

普里姆算法的实现思路就比较简单直接了:

  1. 将连通网中的所有顶点分为两类(假设为 A 类和 B 类)。初始状态下,所有顶点位于 B 类;
  2. 选择一个最佳的顶点,将其从 B 类移动到 A 类;
  3. 从 B 类的所有顶点出发,找出一条连接着 A 类中的某个顶点且权值最小的边,将此边连接着的 A 类中的顶点移动到 B 类;
  4. 重复执行第 3 步,直至 B 类中的所有顶点全部移动到 A 类,恰好可以找到 N-1 条边。

t e m p M a t r i x 1 = [ 0 7 10000 5 10000 7 0 8 9 7 10000 8 0 10000 5 5 9 10000 0 15 10000 7 5 15 0 ] tempMatrix1 = \begin{bmatrix} 0 & 7 & 10000 & 5 & 10000 \\ 7 & 0 & 8 & 9 & 7 \\ 10000 & 8 & 0 & 10000 & 5 \\ 5 & 9 & 10000 & 0 & 15 \\ 10000 & 7 & 5 & 15 & 0 \\ \end{bmatrix} tempMatrix1=071000051000070897100008010000559100000151000075150

在这里插入图片描述

首先找到这个最佳的节点,这里是0号节点。

然后将它看作B类,再找到权值最小的那个边,这里找的是0到3的这条边,然后顺着这条边,把3也连带着看作B类。将其看作一个整体。后面的以此类推就行。

3. Code

package datastructure.graph;

import java.util.Arrays;
import matrix.IntMatrix;

public class Net {
    // 距离的最大值
	public static final int MAX_DISTANCE = 10000;

	// 节点数。
	int numNodes;

	// 权值矩阵。
	IntMatrix weightMatrix;

	/**
	 *********************
	 * The first constructor.
	 * 
	 * @param paraNumNodes The number of nodes in the graph.
	 *********************
	 */
	public Net(int paraNumNodes) {
		numNodes = paraNumNodes;
		weightMatrix = new IntMatrix(numNodes, numNodes);
		for (int i = 0; i < numNodes; i++) {
			Arrays.fill(weightMatrix.getData()[i], MAX_DISTANCE);
		} // Of for i
	}// Of the first constructor

	/**
	 *********************
	 * The second constructor.
	 * 
	 * @param paraMatrix The data matrix.
	 *********************
	 */
	public Net(int[][] paraMatrix) {
		weightMatrix = new IntMatrix(paraMatrix);
		numNodes = weightMatrix.getRows();
	}// Of the second constructor

	// 一个简单的toString方法。
	public String toString() {
		String resultString = "This is the weight matrix of the graph.\r\n" + weightMatrix;
		return resultString;
	}// Of toString

	/**
	 *********************
	 * The Dijkstra algorithm: shortest path from the source to all nodes.
	 * 
	 * @param paraSource The source node.
	 * @return The distances to all nodes.
	 *********************
	 */
	public int[] dijkstra(int paraSource) {
		// Step 1. Initialize.
		int[] tempDistanceArray = new int[numNodes];
		for (int i = 0; i < numNodes; i++) {
			tempDistanceArray[i] = weightMatrix.getValue(paraSource, i);
		} // Of for i

		int[] tempParentArray = new int[numNodes];
		Arrays.fill(tempParentArray, paraSource);
		// -1 for no parent.
		tempParentArray[paraSource] = -1;

		// 略过已处理过的节点。
		boolean[] tempVisitedArray = new boolean[numNodes];
		tempVisitedArray[paraSource] = true;

		// Step 2. 迪杰斯特拉算法的主要内容。
		int tempMinDistance;
		int tempBestNode = -1;
		for (int i = 0; i < numNodes - 1; i++) {
			tempMinDistance = Integer.MAX_VALUE;
			for (int j = 0; j < numNodes; j++) {
				if (tempVisitedArray[j]) {
					continue;
				} // Of if

				if (tempMinDistance > tempDistanceArray[j]) {
					tempMinDistance = tempDistanceArray[j];
					tempBestNode = j;
				} // Of if
			} // Of for j

			tempVisitedArray[tempBestNode] = true;

			// 为下一轮做准备。
			for (int j = 0; j < numNodes; j++) {
				if (tempVisitedArray[j]) {
					continue;
				} // Of if

				if (weightMatrix.getValue(tempBestNode, j) >= MAX_DISTANCE) {
					continue;
				} // Of if

				if (tempDistanceArray[j] > tempDistanceArray[tempBestNode] + weightMatrix.getValue(tempBestNode, j)) {
					tempDistanceArray[j] = tempDistanceArray[tempBestNode] + weightMatrix.getValue(tempBestNode, j);
					tempParentArray[j] = tempBestNode;
				} // Of if
			} // Of for j

			// For test
			System.out.println("The distance to each node: " + Arrays.toString(tempDistanceArray));
			System.out.println("The parent of each node: " + Arrays.toString(tempParentArray));
		} // Of for i

		// Step 3. 输出。
		System.out.println("Finally");
		System.out.println("The distance to each node: " + Arrays.toString(tempDistanceArray));
		System.out.println("The parent of each node: " + Arrays.toString(tempParentArray));
		return tempDistanceArray;
	}// Of dijkstra

	/**
	 *********************
	 * The minimal spanning tree.
	 * 
	 * @return The total cost of the tree.
	 *********************
	 */
	public int prim() {
		int tempSource = 0;
		int[] tempDistanceArray = new int[numNodes];
		for (int i = 0; i < numNodes; i++) {
			tempDistanceArray[i] = weightMatrix.getValue(tempSource, i);
		} // Of for i

		int[] tempParentArray = new int[numNodes];
		Arrays.fill(tempParentArray, tempSource);
		tempParentArray[tempSource] = -1;

		// 略过已访问的节点
		boolean[] tempVisitedArray = new boolean[numNodes];
		tempVisitedArray[tempSource] = true;

		// prim算法的主要内容。
		int tempMinDistance;
		int tempBestNode = -1;
		for (int i = 0; i < numNodes - 1; i++) {
			// 找到那个最佳的节点
			tempMinDistance = Integer.MAX_VALUE;
			for (int j = 0; j < numNodes; j++) {
				if (tempVisitedArray[j]) {
					continue;
				} // Of if

				if (tempMinDistance > tempDistanceArray[j]) {
					tempMinDistance = tempDistanceArray[j];
					tempBestNode = j;
				} // Of if
			} // Of for j

			tempVisitedArray[tempBestNode] = true;

			// 为下一轮做准备。
			for (int j = 0; j < numNodes; j++) {
				if (tempVisitedArray[j]) {
					continue;
				} // Of if

				// 无法找到的节点
				if (weightMatrix.getValue(tempBestNode, j) >= MAX_DISTANCE) {
					continue;
				} // Of if

				if (tempDistanceArray[j] > weightMatrix.getValue(tempBestNode, j)) {
					// Change the distance.
					tempDistanceArray[j] = weightMatrix.getValue(tempBestNode, j);
					// Change the parent.
					tempParentArray[j] = tempBestNode;
				} // Of if
			} // Of for j

			// For test
			System.out.println("The selected distance for each node: " + Arrays.toString(tempDistanceArray));
			System.out.println("The parent of each node: " + Arrays.toString(tempParentArray));
		} // Of for i

		int resultCost = 0;
		for (int i = 0; i < numNodes; i++) {
			resultCost += tempDistanceArray[i];
		} // Of for i

		// 输出。
		System.out.println("Finally");
		System.out.println("The parent of each node: " + Arrays.toString(tempParentArray));
		System.out.println("The total cost: " + resultCost);

		return resultCost;
	}// Of prim

	/**
	 *********************
	 * The entrance of the program.
	 * 
	 * @param args Not used now.
	 *********************
	 */
	public static void main(String args[]) {
		Net tempNet0 = new Net(3);
		System.out.println(tempNet0);

		int[][] tempMatrix1 = { { 0, 9, 3, 6 }, { 5, 0, 2, 4 }, { 3, 2, 0, 1 }, { 2, 8, 7, 0 } };
		Net tempNet1 = new Net(tempMatrix1);
		System.out.println(tempNet1);

		tempNet1.dijkstra(1);
        System.out.println();

		// 建立一个无向网。
		int[][] tempMatrix2 = { { 0, 7, MAX_DISTANCE, 5, MAX_DISTANCE }, { 7, 0, 8, 9, 7 },
				{ MAX_DISTANCE, 8, 0, MAX_DISTANCE, 5 }, { 5, 9, MAX_DISTANCE, 0, 15 },
				{ MAX_DISTANCE, 7, 5, 15, 0 } };
		Net tempNet2 = new Net(tempMatrix2);
		tempNet2.prim();
	}// Of main
}

运行结果:

在这里插入图片描述

<think>好的,我现在需要帮助用户解决在MATLAB中读取一个TXT文件并显示其数据结构及维度的问题。首先,用户提供的代码中有clear命令,然后尝试加载文件,但路径可能存在问题,导致文件不存在错误。用户还希望了解数据结构及其维度。 首先,我应该检查文件路径是否正确。用户提供的路径看起来很长,可能存在转义字符的问题。在MATLAB中,反斜杠需要用双反斜杠或者正斜杠来表示。因此,用户代码中的路径可能需要调整。不过,用户已经使用了exist函数检查文件是否存在,如果路径错误,会触发error。所以需要确保路径正确。 接下来,用户使用load函数读取TXT文件。但load函数通常用于读取MAT文件或特定格式的文本数据,比如每行数值相同且以空格分隔。如果TXT文件格式不标准(如包含非数值数据、不同列数),load可能无法正确读取,导致数据维度错误或加载失败。此时可能需要更灵活的函数,如readtable、textscan或importdata来处理不同格式的数据。 用户的目标是显示数据结构维度。因此,读取数据后,需要确定变量类型。如果数据是数值矩阵,使用size函数即可得到维度。如果包含混合类型数据,可能需要使用table或结构体,并检查各列的数据类型。 可能的解决方案步骤: 1. 使用正确的路径,确保文件存在。可能需要将反斜杠替换为双反斜杠或正斜杠。 2. 根据文件内容选择合适的读取函数。如果数据是纯数值且结构规整,load可能可行;否则使用其他函数。 3. 读取后,检查变量类型(如矩阵、table、结构体等),并显示其大小结构。 例如,使用importdata可以处理包含头部信息的文本文件,返回结构体,包含数据矩阵文本头。readtable会将数据读取为表格,便于处理混合类型数据。而textscan允许更灵活的格式指定,适用于复杂结构。 然后,用户可能需要根据数据实际情况调整读取方式。如果数据有标题行或注释行,需要跳过这些行。此外,检查数据中的分隔符类型(逗号、空格、制表符等)也很重要,以确保正确解析。 最后,显示数据结构时,使用whos命令或直接查看变量属性,size函数获取维度,class函数确定变量类型。如果数据包含多个部分(如多个矩阵),可能需要分别处理。 相关问题方面,应该围绕文件读取、数据类型处理、错误排查等方面展开,帮助用户进一步理解解决潜在问题。</think><< 要读取并显示TXT文件的数据结构维度,可以使用以下MATLAB代码: ```matlab clear filepath = 'D:\办公室台式机\来自:本地电脑\科研\1基金申请\1基金申请\1杨老师申请基金\1重大项目\执行\4唐车声发射试验\声发射实验报告数据\动载荷疲劳实验\2024.12.30疲劳测试实验\dynamic load day38(12.30)\dynamic load day38(12.30)\parameter data\1.TXT'; % 检查文件是否存在 if ~exist(filepath, 'file') error('文件不存在或路径错误,请检查以下路径:\n%s', filepath); end % 尝试自动检测文件格式并读取 try % 使用importdata读取通用格式 data = importdata(filepath); % 显示数据结构信息 disp('======= 数据结构 ======='); whos data % 显示具体维度信息 if isstruct(data) disp('【结构体字段】'); disp(fieldnames(data)') if isfield(data, 'data') fprintf('数值矩阵维度: %s\n', mat2str(size(data.data))); end if isfield(data, 'textdata') fprintf('文本数据维度: %s\n', mat2str(size(data.textdata))); end else fprintf('数据矩阵维度: %s\n', mat2str(size(data))); end catch ME error('文件读取失败,错误信息:\n%s', ME.message); end ``` 解释说明: 1. **路径检查**:首先使用exist函数验证文件是否存在,避免后续读取错误 2. **通用读取**:使用importdata函数可以自动处理包含混合类型(数值+文本)的文件 3. **结构判断**: - 如果是结构体:说明文件包含数值矩阵文本头 - 如果是普通矩阵:说明文件是纯数值数据 4. **维度显示**: - whos命令显示变量类型维度 - 对结构体数据单独显示各字段维度 5. **错误处理**:通过try-catch捕获具体读取错误 可能出现的结果形式: - 纯数值数据:显示类似"数据矩阵维度: [1000 8]" - 混合数据:显示"数值矩阵维度: [500 6]""文本数据维度: [3 1]"
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值