利用Python实现PDF文档中文本提取与图像OCR处理的完整指南

当处理文档时,有时候我们需要提取其中的文本信息。这可能是为了进行文本分析、搜索、或者其他各种自动化处理。在这篇博客中,我们将介绍如何使用 Python 中的几个库来实现 PDF 文档中文本的提取,以及如何利用 OCR 技术处理图像中的文本信息。

背景

在日常工作中,我们经常会遇到需要处理 PDF 文档中文本的需求。而有时候,这些 PDF 文档中的文本可能并不是可直接复制的,或者我们需要处理图像中的文本信息。这时候,OCR(光学字符识别)技术就显得尤为重要了。OCR 可以将图像中的文本信息提取出来,转换成计算机可处理的文本数据,为后续的分析和处理提供了便利。

工具与技术

在本文中,我们将使用以下工具和技术来实现 PDF 文档中文本的提取以及图像中文本的 OCR 处理:

  • PyMuPDF(fitz): 一个 Python 库,用于处理 PDF 文档。我们将使用它来打开 PDF 文件,并将每一页转换为图像格式。
  • Pillow(PIL): 一个 Python 图像处理库,用于处理图像。我们将使用它来读取图像文件。
  • pytesseract: 一个 Python 包装器,用于 Google 的 Tesseract-OCR 引擎。我们将使用它来进行 OCR 处理,提取图像中的文本信息。
  • OpenCV: 一个流行的开源计算机视觉库,用于图像处理。我们将使用它来读取图像文件,作为 pytesseract 的输入。

实现步骤

以下是我们将要实现的步骤:

  1. 使用 PyMuPDF 打开 PDF 文件,并遍历每一页。
  2. 将每一页转换为图像格式。
  3. 使用 Pillow 读取图像文件,并将其转换为 pytesseract 所需的格式。
  4. 使用 pytesseract 进行 OCR 处理,提取图像中的文本信息。
  5. 将提取的文本信息保存到文本文件中。

代码实现

from PIL import Image
import pytesseract
import fitz
import cv2

pdf_file_path = "OCR素材1:招友.pdf"

pdf_document = fitz.open(pdf_file_path)

scale_factor = 2

ocr_language = 'chi_sim'


for page_number in range(pdf_document.page_count):

    page = pdf_document.load_page(page_number)

    pix = page.get_pixmap(dpi=300)

    img = Image.frombytes("RGB", (pix.width, pix.height), pix.samples)

    image_file_name = f"page_{page_number + 1}.png"

    img.save(image_file_name)

    img1 = cv2.imread(f"page_{page_number + 1}.png", 0)

    text = pytesseract.image_to_string(img1, lang=ocr_language, config='--psm 4')

    text_file_name = f"page_{page_number + 1}.txt"

    with open(text_file_name, "w", encoding="utf-8") as text_file:
        text_file.write(text)


pdf_document.close()

结论

通过这篇博客,我们学习了如何使用 Python 中的几个库来实现 PDF 文档中文本的提取以及图像中文本的 OCR 处理。这些技术可以帮助我们更轻松地处理文档中的文本信息,为后续的分析和处理提供了便利。如果你有任何疑问或者建议,欢迎在下方留言讨论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值