计算斐波那契数列
斐波那契数列是一个以递归的方法来定义的数列。数列的前两个数字是 0 和 1,后续的每一个数字都是它前两个数之和。
数列的前几个数字如下:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
任务:
- 写一个Python函数,这个函数接受一个参数
n
,返回斐波那契数列的第n
个数字。例如,如果
n = 0
,函数返回0
;如果n = 4
,函数返回3
。
- 优化你的函数,以便于它能处理较大的输入值(例如,
n = 1000
)。你可能需要使用一种称为 “动态规划” 的技术,该技术将先前计算的结果存储起来,以便后续使用,从而提高效率。
#递归:计算 fibonacci(n-1) 和 fibonacci(n-2) 时,fibonacci(n-2) 被计算了两次。当n很大时,重复子问题很多
def fibonacci(n):
result = [0, 1]
if n == 0 or n == 1:
return n
else:
return fibonacci(n-1) + fibonacci(n-2)
# 改进版:使用动态规划,将中间结果保存下来,避免重复计算
def fibonacci(n):
result = [0, 1]
for i in range(2, n + 1):
result.append(result[i - 1] + result[i -2])
return result[n]
# 简单版,只使用了恒定空间,并且可以在合理时间里计算出较大的斐波那契数
def fibonacci(n):
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return a