第四章 数学知识 排列组合

求组合数有很多方法,需要根据数据范围去选择不同的方法。
C a b = a ( a − 1 ) ( a − 2 ) . . . . ( a − b + 1 ) 1 ∗ 2 ∗ 3 ∗ . . . ∗ b = a ! b ! ( a − b ) ! C_a^b=\frac{a(a-1)(a-2)....(a-b+1)}{1*2*3*...*b}=\frac{a!}{b!(a-b)!} Cab=123...ba(a1)(a2)....(ab+1)=b!(ab)!a!

1、取模的组合数计算

给定 n 组询问,每组询问给定两个整数 a,b,请你输出 C b a   m o d   ( 1 0 9 + 7 ) C_b^a\ mod \ (10^9+7) Cba mod (109+7) 的值。根据a和b以及n的规模,我们将采用不同的方式进行计算。
定义N= 1 0 9 + 7 10^9 + 7 109+7

1. 直接预处理结果

使用递推公式 C a b = C a − 1 b + C a − 1 b − 1 C_a^b=C_{a-1}^b+C_{a-1}^{b-1} Cab=Ca1b+Ca1b1进行递推,预处理出所有c[i][j]数组,代表 C i j C_i^j Cij的值。
这里我们要求1<= b<=a<= 2000

const int N = 1e9 + 7,M = 2010;
int c[M][M];
//预处理代码
//i代表a
for(int i = 0; i < M; i ++)
{  //j代表b,b要始终小于等于a
   for(int j = 0; j <= i; j ++)
   {
      if(!j) c[i][j] = 1;
      else{
         c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % N;
      }
    }
}

预处理之后,任何传进来符合范围的数字均可以直接得到结果。
时间复杂度 O ( N 2 ) O(N^2) O(N2)

2. 预处理中间步骤

同样采用预处理的方式,只是预处理的方式有所不同,上面的我们直接预处理出来,所有的结果,这里我们预处理的是中间步骤。
C a b   m o d   M = a ! b ! ( a − b ) !   m o d   M = a ! ( b ! ) − 1 ( ( a − b ) ! ) − 1   m o d   M C_a^b\ mod\ M=\frac{a!}{b!(a-b)!}\ mod\ M=a!(b!)^{-1}((a-b)!)^{-1}\ mod \ M Cab mod M=b!(ab)!a! mod M=a!(b!)1((ab)!)1 mod M
这里-1代表乘法逆元。
所以我们只需要处理出所有a、b的阶乘及其逆元,即可快速拼装出结果,这里M为一个质数,所以可以使用快速幂进行实现。如果M是一个合数,就可以使用扩展欧几里得
可以参考
时间复杂度 O ( N l o g N ) O(NlogN) O(NlogN)
这里我们要求1 <= b <= a <= 10^5

#include<iostream>
using namespace std;
const int N = 1e5 + 10, M = 1e9 + 7;
int fact[N],infact[N];
//快速幂
int qmi(int a, int k, int p)
{
    int res = 1;
    while(k)
    {
        if(k & 1)
        {
            res = (long long)res * a % p;
        }
        a = (long long)a * a % p;
        k >>= 1;
    }
    return res % p;
}
//初始化阶乘以及阶乘的逆元
void init()
{
    fact[0] = infact[0] = 1;
    for(int i = 1; i < N; i ++)
    {
    	//求阶乘
        fact[i] = (long long)fact[i - 1] * i % M;
        //求阶乘逆元
        infact[i] = (long long)infact[i - 1] * qmi(i,M - 2,M) % M;
    }
}
int main()
{
    int n;
    cin >> n;
    init();
    for(int i = 0; i < n; i ++)
    {
        int a,b;
        cin >> a >> b;
        //组合成结果
        cout << (long long)fact[a] * infact[a - b] % M *infact[b] % M << endl;
    }
}

3. 卢卡斯定理

适用于a和b的取值范围超大(例如 1 <= b <= a <= 10^18),与此同时取模的数p(1<=p<=10^5)不算大的情况。
C a b   m o d   p ≡ C a   m o d   p b   m o d   p ∗ C a / p b / p C_a^b\ mod\ p\equiv C_{a\ mod\ p}^{b\ mod\ p}*C_{a/p}^{b/p} Cab mod pCa mod pb mod pCa/pb/p

int qmi(int a, int k, int p)
{
    int res = 1;
    while (k)
    {
        if (k & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
}

//直接计算的方法
int C(int a, int b, int p)
{
    if (b > a) return 0;

    int res = 1;
    for (int i = 1, j = a; i <= b; i ++, j -- )
    {
        res = (LL)res * j % p;
        res = (LL)res * qmi(i, p - 2, p) % p;
    }
    return res;
}


int lucas(LL a, LL b, int p)
{
    if (a < p && b < p) return C(a, b, p);
    //a % p b % p 取值较小,可以直接进行计算。
    //a / p b / p 取值不一定小,继续使用lucas计算
    return (LL)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;
}

2、直接计算出结果(不取模)

对于直接计算的情况来说,会采取分解质因数的思路进行计算,具体如下:
C a b = a ( a − 1 ) ( a − 2 ) . . . . ( a − b + 1 ) 1 ∗ 2 ∗ 3 ∗ . . . ∗ b = a ! b ! ( a − b ) ! C_a^b=\frac{a(a-1)(a-2)....(a-b+1)}{1*2*3*...*b}=\frac{a!}{b!(a-b)!} Cab=123...ba(a1)(a2)....(ab+1)=b!(ab)!a!

  • 筛出所有小于a的质数
  • 计算出a!、b!、(a-b)!中,包含各个质数的个数
  • 用a!的质数的个数减去b!质数的个数减去(a-b)!质数的个数,就是整个答案中,该质因数的个数
  • 将所有的质因数按照数量相乘,就可以得到最终的结果,这一步需要高精度乘法实现

其中步骤计算出a!、b!、(a-b)!中,包含各个质数的个数可以使用下面的方式求出
a ! = a p + a p 2 + a p 3 . . . + a p n + . . . . a! = \frac{a}{p}+ \frac{a}{p^2}+ \frac{a}{p^3} ...+ \frac{a}{p^n}+.... a!=pa+p2a+p3a...+pna+....

const int N = 5010;
typedef long long LL;
int prime[N],cnt;
bool st[N];

//筛素数
void getP(int n)
{
    for(int i = 2; i <= n; i ++)
    {
        if(!st[i])prime[cnt ++] = i;
        for(int j = 0; prime[j] <= n / i; j ++)
        {
            st[prime[j] * i] = true;
            if(i % prime[j] == 0)break;
        }
    }
}
//高精度乘法
vector<int> mul(vector<int> a ,int b)
{
    int t = 0;
    vector<int> res;
    for(int i = 0; i < a.size(); i ++)
    {
        t = a[i] * b + t;
        res.push_back(t % 10);
        t /= 10;
    }
    while(t)
    {
        res.push_back(t % 10);
        t /= 10;
    }
    return res;
}
//获取a!的阶乘中包含的质数p的个数
int getN(int a, int p)
{
    int res = 0;
    while(a)
    {
        res += a / p;
        a /= p;
    }
    return res;
}

int main()
{
    int a,b;
    scanf("%d%d",&a,&b);
    getP(a);
    vector<int> ans;
    ans.push_back(1);
    for(int i = 0; i < cnt; i ++)
    {
        int p = prime[i];
        int k = getN(a,p) - getN(b,p) - getN(a - b,p);
        for(int j = 0; j < k; j ++)
        {
            ans = mul(ans,p);
        }
    }
    for(int i = ans.size() - 1; i >= 0; i --)
    {
        printf("%d",ans[i]);
    }
    
}

参考资料

Acwing

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值