【大模型学习】第十九章 什么是迁移学习

目录

1. 迁移学习的起源背景

1.1 传统机器学习的问题

1.2 迁移学习的提出背景

2. 什么是迁移学习

2.1 迁移学习的定义

2.2 生活实例解释

3. 技术要点与原理

3.1 迁移学习方法分类

3.1.1 基于特征的迁移学习(Feature-based Transfer)

案例说明

代码示例

3.1.2 基于模型的迁移(Model-based Transfer)

案例说明

BERT用于情感分析的例子

3.1.3 基于实例的迁移(Instance-based Transfer)

3.2 迁移学习的核心原理

4. 迁移学习架构

4.1 基本架构

4.2 源域与目标域的定义

4.3 知识迁移过程


1. 迁移学习的起源背景

1.1 传统机器学习的问题

        传统机器学习方法(如监督学习)通常假设训练数据(源域)与测试数据(目标域)‌独立同分布‌(i.i.d.),且需要满足以下条件:

  • 数据充足性‌:模型需依赖大量标注数据训练才能达到高性能。
  • 场景一致性‌:模型仅在训练数据分布的范
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

好多渔鱼好多

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值