目录
3.1.1 基于特征的迁移学习(Feature-based Transfer)
3.1.2 基于模型的迁移(Model-based Transfer)
3.1.3 基于实例的迁移(Instance-based Transfer)
1. 迁移学习的起源背景
1.1 传统机器学习的问题
传统机器学习方法(如监督学习)通常假设训练数据(源域)与测试数据(目标域)独立同分布(i.i.d.),且需要满足以下条件:
- 数据充足性:模型需依赖大量标注数据训练才能达到高性能。
- 场景一致性:模型仅在训练数据分布的范