ground truth 到底是什么意思???

Groundtruth是评估机器学习模型性能的关键,它代表了真实、准确的数据,用于训练和验证模型。在监督学习中,groundtruth数据是已知分类的样本,用于衡量预测结果的精度。它是误差分析和效果好坏判断的标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

“ground truth”这个术语指的是为这个测试收集适当的目标数据的过程。在机器学习中,“ground truth”一词指的是训练集对监督学习技术的分类的准确性。总的来说就是就是把ground-truth当成一个标准,一个看看误差,看看效果好坏的值。简单来说就是有效的正确的数据。
在这里插入图片描述

### 图像分割中的 Ground Truth 定义 在图像分割任务中,Ground Truth 是指用于评估模型预测性能的标准真实标签。具体来说: #### 语义分割的 Ground Truth 对于语义分割而言,Ground Truth 表现为逐像素分类标签图。这意味着每张输入图片对应一张相同尺寸的地图,在这张地图里每个像素都被赋予了一个类别标签,表示该位置属于哪个物体或场景部分[^1]。 ```python import numpy as np from PIL import Image def load_semantic_gt(gt_path): gt_image = Image.open(gt_path).convert('L') # 假设灰度图为单通道类别的索引 gt_array = np.array(gt_image) return gt_array ``` #### 实例分割的 Ground Truth 实例分割则更进一步,除了提供上述提到的逐对象掩码外还包含了具体的类别信息。因此其 Ground Truth 不仅要标注出各个目标的位置范围(通过二值化掩模实现),而且还要明确指出这些区域所属的具体种类以及不同个体之间的区别。 ```python masks = [] # 存储多个实例的mask列表 labels = [] # 对应于每个mask的label列表 for obj_id in range(num_objects): mask = ... # 获取第obj_id个对象的mask label = ... # 获取对应的类别 masks.append(mask) labels.append(label) gt_instance_data = {'masks': masks, 'labels': labels} ``` #### 全景分割的 Ground Truth 全景分割综合了前两者的要求,它既要求精确到每一个像素点上的类别分配又能够区分同一类别下的不同实体。所以这里的 Ground Truth 将会是一组复杂的结构体,既能表达事物(things),也能处理背景(stuff)。 ```python panoptic_map = {} # 字典形式存储各类别及其子项的信息 # 遍历所有检测到的对象并构建映射关系 for segment_info in segments: category_id = segment_info['category_id'] instance_id = segment_info.get('instance_id', None) # 可能不存在特定ID的情况适用于stuff if category_id not in panoptic_map: panoptic_map[category_id] = [] entry = { "id": instance_id, "area": segment_info["area"], "bbox": segment_info["bbox"] } panoptic_map[category_id].append(entry) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值