文本生成论文阅读A Distributional Lens for Multi-Aspect Controllable Text Generation

文章提出了一种新的多向可控文本生成方法,通过在属性分布的交集区域搜索来解决现有方法中的属性退化问题。使用自编码器估计属性空间,然后迭代接近多个属性的交点,最后用前缀调优的解码器生成文本。实验显示该方法在属性相关性和文本质量上优于基线,并在情感控制、主题控制和文本去毒任务上达到SOTA。然而,该方法在少样本和属性语义差距大时可能受限。

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

多向可控文本生成是一项比单向控制更具挑战性和实用性的任务。现有方法通过融合从单一方面学习到的多个控制器来实现复杂的多方面控制,但由于各控制器之间的相互干扰,导致属性退化。为了解决这个问题,作者从分布的角度对属性融合进行了观察,并提出直接搜索多个属性分布的交集区域作为它们的组合进行生成。首先用自编码器结构估计属性空间。之后,通过联合最小化到表示不同属性的点的距离来迭代地接近交点。最后,使用基于前缀调优的解码器将它们映射到与属性相关的句子。在三种控制任务上(包括情感控制、主题控制和文本去毒)的实验表明,该方法在属性相关性和文本质量方面优于几个强大的基线,并达到了SOTA。后续分析也为该方法的有效性提供了一些解释性支持。


以下是论文的正文内容

一、相关工作

前人工作

多属性可控生成是文本生成中一种困难但有高价值的任务。现有的方法大多数在各属性的分布的插值中心寻找满足多属性要求的句子表示。以下为常见的三种处理方法
1)weighred decoding
使用一个属性判别器来引导语言模型(也就是在解码阶段使用判别器进行微调):PPLM,Fudge,Gedi等等、
2)Multi-Objextive Optimization
使用语言模型来混合多个目标:DGC,COLD Decoding等等
使用拉格朗日乘数法将多目标优化问题转化为不等式约束:MUCOCO等等
3)Prefix Tuning
prefix

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值