Prim构造最小生成树
1.问题
在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此边的权重,若存在 T 为 E 的子集(即)且为无循环图,使得的 w(T) 最小,则此 T 为 G 的最小生成树。
2.设计
这是一个简单的无向图,使用Prime方法构造最小生成树,就是取一个初始点放在集合U中,然后找到所有与它相连的边中权值最小的边,如果未成环,将这条边所连的点也放入U中,再依此找到所有与U中的点相连的边中最小的边以此类推,直到所有的点都进入到U中
1.
2.
3.
4.
最终就构造出来了最小生成树
3.设计
const int N = 5;
bool visit[N];
int dist[N] = { 0, };
int G[N][N] = { }, //INF代表两点之间不可达
int prim(int cur)//首个挑选到的节点 cur
memset(visit, false, sizeof(visit)); //标记数组,初始化,全部未访问
for (i = 0; i < N; i++)//与第一个挑走的点i,相连的所有边的距离,存入dist[]中
dist[i] = G[cur][i];//初始化,每个与a邻接的点的距离存入dist
for (i = 1; i < N; i++)//遍历表中每一个节点
{
int minn = INF; //与另一个表相连的最小边,初始化,为一个极大值
for (j = 0; j < N; j++)
{
if (!visit[j] && dist[j] < minn) //找到未访问的点中,距离当前最小生成树距离最小的点
{
minn = dist[j]; //不断更新与点cur的相连点的最短距离
index = j;
}
}
};
4.源码
https://github.com/jiachenwei123/jiajia/blob/master/prime