机器学习02-代价函数、线性回归、梯度下降

线性回归

是一种预测监督式学习的方法,它通常表现为如下形式
在这里插入图片描述
表现形式
h ( x ) = θ 0 + θ 1 ∗ x h ( x ) = \theta_0 + \theta_1 * x h(x)=θ0+θ1x
代表假设函数,x代表输入,输出预测值。
对数据集进行简单的拟合,最简单的模型。表现形式为一次函数。比如

线性回归有一个训练集,我们选择了线性回归,那么要如何选择合适的参量使得我们的预测更为准确呢?
在这里插入图片描述

代价函数

选择的依据

我们知道了现有的数据是准确的,那么预测就要以现有的数据为根基,尽量的贴合现有的数据,使得差距最小,怎么衡量这个差距呢?

平方和误差

我们把
∑ i = 1 n ( h ( x i ) − y i ) 2 \sum_{i=1}^n(h(x^i)-y^i)^2 i=1n(h(xi)yi)2

x i x^i xi代表第i个值, h ( x i ) h(x^i) h(xi)代表预测的第i个值, y i y^i yi代表实际的第i个值。

这个函数称为平方和误差函数,我们要想办法求得这个函数最小的 θ 0 \theta_0 θ0 θ 1 \theta_1 θ1

平均平方和误差

为了方便,我们又给出了平均平方和误差的概念
我们把
1 2 m ∑ i = 1 n ( h ( x i ) − y i ) 2 \frac {1}{2m}\sum_{i=1}^n(h(x^i)-y^i)^2 2m1i=1n(h(xi)yi)2

称之为平均平方和误差,之所以要 1 2 \frac {1}{2} 21,是因为带了平方,后面要用梯度下降法,要求导,这样求导多出的乘2就和二分之一抵消了,是一个简化后面计算的技巧。

以线性回归为例:

定义

我们把
J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 n ( h ( x i ) − y i ) 2 J(\theta_0,\theta_1) = \frac {1}{2m}\sum_{i=1}^n(h(x^i)-y^i)^2 J(θ0,θ1)=2m1i=1n(h(xi)yi)2

称之为代价函数,我们求得就是使这个值最小的 θ 0 \theta_0 θ0 θ 1 \theta_1 θ1

在这里插入图片描述

图像

在这里插入图片描述
如图,左图为假设函数,右图为其代价函数的等高线图。
在这里插入图片描述
右图中标识红点相当接近最小值,表明函数对数据的拟合还不错。

梯度下降法

在这里插入图片描述
梯度下降算法-循环直至收敛
在这里插入图片描述

:= 表示赋值
α \alpha α 学习率 (learing rate):下降的幅度; α \alpha α越大,梯度下降的越迅速。

实现该算法,需要同时更新 θ 0 \theta_0 θ0 θ 1 \theta_1 θ1
在这里插入图片描述
左图为正确的同步更新,右图为错误的例子,未实现同步更新。

J ( θ 1 ) J(\theta_1) J(θ1)为例,当该点斜率为正数时, θ 1 \theta_1 θ1向左;当该点斜率为负数时, θ 1 \theta_1 θ1向右。

在这里插入图片描述

α \alpha α 学习率

在这里插入图片描述
α \alpha α 越小,下降得越慢
α \alpha α 越大,下降得越快, α \alpha α 太大会导致无法收敛甚至发散。
在这里插入图片描述

线性回归的梯度下降

在这里插入图片描述
在这里插入图片描述
推导过程:
在这里插入图片描述
在这里插入图片描述

该算法也被称为Batch梯度下降法

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值