ROC曲线与“代价曲线”(cost-curve)的探究(1)

本文深入探讨ROC曲线的基本性质,包括ROC曲线必经原点和(1,1)、上方曲线优于下方曲线等。此外,文章介绍了AUC的定义及其与分类器性能的关系,强调ROC曲线对样本分布的不敏感性。最后,文章指出ROC曲线的局限,并预告将讨论解决这些问题的代价曲线。" 126746099,9396188,HarmonyOS Service中使用Emitter传递数据,"['Harmonyos', '服务开发', '触发器', '数据通信']
摘要由CSDN通过智能技术生成

引言

  很多分类器是为测试样本产生一个实值或概率预测,然后将这个预测值与一个分类阈值进行比较,若大于阈值则分为正类,否则为负类。
  在不同的应用任务中,根据实际需要,可以选择不同的阈值。如果我们更加重视“查准率(Precision Rate)”,那么可以将阈值选得较大;如果我们更重视“召回率(Recall Rate)”,那么可以将阈值选得较小。
  当样本分布给定的时候,对于特定的阈值,我们都可以用该分类器进行测试,计算出真正例率(True Positive Rate,简称TPR, T P R = T P T P + F N TPR=\frac{TP}{TP+FN} TPR=TP+FNTP )和假正例率(False Positive Rate,简称FPR, F P R = F P T N + F P FPR=\frac{FP}{TN+FP} FPR=TN+FPFP )。如果连续地改变阈值,那么TPR和FPR就会构成一条二维曲线,这条曲线就称为ROC曲线(Receiver Operating Characteristic Curve)。

ROC曲线

在这里插入图片描述

ROC曲线的基本性质

性质1:任何ROC曲线必定经过原点和(1,1)

证明:
  当阈值大于所有样本的预测值时,所有的样本都会被归为负类,这时正例数为0,因此FPR和TPR都为0,对应于ROC曲线的原点,此时的分类方法是最“保守的”。
  当阈值小于所有样本的预测值时,所有的样本都会被归为正类,此时负例数为0,因此

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值