变分距离度量概率分布之间的差异

文章目录

变分距离

  变分距离(variational distance)是一种用于衡量两个概率分布间差异的度量方法。它衡量的是从一个概率分布转换为另一个概率分布所需的最小代价,通常用于比较两个概率分布的相似性或差异性。

  给定两个概率分布P和Q,变分距离通过最小化一个目标函数来度量它们之间的差异。目标函数通常采用Kullback-Leibler散度(KL散度)或Jensen-Shannon散度(JS散度)来定义。KL散度衡量了P相对于Q的信息损耗,而JS散度是KL散度的对称平均。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
变分贝叶斯推断(Variational Bayesian Inference)是一种用于近似推断概率模型参数的方法,而高斯混合模型(Gaussian Mixture Model,简称GMM)是一种常用的概率模型,用于对数据进行聚类和密度估计。 在变分贝叶斯推断中,我们希望找到一个近似的后验分布来描述模型参数的不确定性。对于GMM而言,我们需要推断每个高斯分量的均值、协方差矩阵以及每个分量的权重。为了达到这个目标,我们需要引入一个变分分布来逼近后验分布。 具体步骤如下: 1. 假设变分分布由一组参数表示,例如均值和协方差矩阵。可以选择一个具有高灵活性的分布族,如高斯分布。 2. 使用变分推断方法,通过最小化原始模型与变分分布之间的KL散度来找到最佳的变分分布参数。 3. 在高斯混合模型中,我们可以使用变分EM算法来进行推断。首先,使用EM算法通过迭代更新估计模型参数。然后,使用变分推断来更新变分分布参数。 4. 变分推断的迭代过程通常涉及期望步骤(E-step)和最大化步骤(M-step)。在E步中,计算变分分布的期望参数。在M步中,使用这些期望参数来更新模型参数。 5. 迭代上述步骤,直到满足收敛准则,如变分下界(variational lower bound)的收敛。 总的来说,变分贝叶斯推断对于GMM的推断过程涉及到选择适当的变分分布以及迭代的EM算法和变分推断步骤。它通过近似计算后验分布来推断GMM的参数,可用于聚类分析、异常检测等任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

信通天使

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值