Prefix Tuning
Prefix Tuning是斯坦福在2021年提出的一种微调方法,主要的创新点在于对之前传统的人工构造prompt模板方式进行了改进。因为之前的人工构建的template是离散的,且针对不同的下游任务,需要构建不同的模版。而没有通用的标准去评价模板效果的优劣。所以Prefix Tuning旨在创建一种连续的可学习的模板,将prompt转换为virtual tokens embedding,并将其添加至输入中,作为输入的前缀。
对于transformer的每一层 (不只是输入层,且每一层transformer的输入不是从上一层输出,而是随机初始化的embedding作为输入),都在真实的句子表征前面插入若干个连续的可训练的"virtual token" embedding,这些伪token不必是词表中真实的词,而只是若干个可调的自由参数。
同时,为了防止直接更新Prefix的参数导致训练不稳定的情况,特在Prefix层前面加了MLP结构(相当于将Prefix分解为更小维度的Input与MLP的组合后输出的结果),训练完成后,只保留Prefix的参数。
P-Tuning V1
P-Tuning(GPT Understands, Too),该方法将离散的Prompt转换为可以学习的Embedding层,并用MLP+LSTM的方式来对Prompt Embedding进行一层处理,成功地实现了模版的自动构建。
相比Prefix Tuning,P-Tuning加入的可微的virtual token仅限于输入层,没有在每一层都加;另外,virtu