pytorch
闲看庭前雪
热爱学习,热爱科研,热爱学习的大雪人,用爱来爱每一个爱我的人,用心去做每一件值得用心去做的事。
展开
-
使用debug查看循环里的变量值
项目场景:提示:这里简述项目相关背景:如何查看循环里的变量值即使使用paycharm的pyhton控制台也无法查看到的那些隐藏的变量值,如何使用断点和debug查看问题描述:跑代码时,有些变量,我没法查看到,使用print,每次我都要重新跑例如,我想查看中间变量h的形状:代码如下:else: # If MLP print('x.size', x.size) h = x for i in range(self.num_layers - 1):原创 2022-02-13 18:20:35 · 2553 阅读 · 0 评论 -
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0
项目场景:神经网络模型运行中,出现的问题。RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!问题描述:出现RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!的原因是:原创 2022-01-14 16:01:51 · 4375 阅读 · 0 评论 -
ValueError: optimizer got an empty parameter list
项目场景:深度学习项目中,对神经网络进行编层。出现ValueError: optimizer got an empty parameter list问题描述:ValueError: optimizer got an empty parameter list!一定要具体问题具体分析。先直接定位出错代码层,从出错代码层可以直接看到没有self传参class Classifier(nn.Module): def __init__(self): super(Classifi原创 2022-01-13 17:52:28 · 3926 阅读 · 0 评论 -
无覆盖,追加保存数据到txt文件,且数据量较大,保存到txt文件时,出现数据省略的现象的解决
无覆盖,追加保存数据到txt文件数据量较大,保存到txt文件时,出现数据省略的现象项目场景:保存实验特征数据问题描述:在保存特征时,由于数据量较大,保存到txt文件时,出现数据省略的现象。原因分析:提示:这里填写问题的分析:numpy显示与保存数据问题解决方案:提示:这里填写该问题的具体解决方案:在保存代码种添加 np.set_printoptions(threshold=np.inf)#全部输出即可。y = outputs_1.data.numpy()np.set原创 2021-06-15 10:19:24 · 707 阅读 · 6 评论 -
关于保存数据时,提取数据特征的数量和样本数不匹配的原因
关于保存数据时,提取数据特征的数量和样本数不匹配的原因项目场景:样本总数354,测试集283,验证集36,测试集350个epoch,保存的特征数据是【35,90】1个epoch,保存的特征数据是【534,90】2个epoch,保存的特征数据是【1033,90】问题描述:保存特征的数量和样本数量不匹配,按理说保存一个epoch的特征的数量应该是所有样本的数量,这里反而多了。原因分析:0个epoch,保存的是测试集的特征,即35个那么一个epoch保存的特征分别为,283个训练集特征,原创 2021-06-15 10:05:54 · 726 阅读 · 0 评论 -
pytorch加载保存模型
项目场景: pytorch加载保存模型问题描述: 加载保存模型解决方案:非常感谢这个链接不错的记录链接:https://blog.csdn.net/comli_cn/article/details/107516740配合该链接食用效果更加我这里的train替换了他的predict一、保存整个模型虽然占用内存大,但我觉得比仅仅保存模型参数省事保存路径:PATH_all = '/home/ubuntu/liyafeng/NEW_train/728_fusion/daima/MRI_d原创 2021-06-09 19:02:06 · 214 阅读 · 0 评论 -
RuntimeError: multi-target not supported at
项目场景:手搓CNN问题描述:提示:这里描述项目中遇到的问题:出错代码:batch_loss = loss(train_pred, data[1].cuda())data[1] 是数据的标签出错提示:RuntimeError: multi-target not supported at C:/cb/pytorch_1000000000000/work/aten/src\THCUNN/generic/ClassNLLCriterion.cu:15原因分析:提示:这里填写问题的分析:维原创 2021-06-05 17:37:58 · 3394 阅读 · 0 评论 -
标准化处理数据和panda读取excel数据,保存数据
标准化处理数据和panda读取excel数据,保存数据项目场景:提示:标准化处理数据和panda读取数据代码:标准化处理数据def standardization(data):#标准化 mu = np.mean(data, axis=1).reshape(-1,1)#axis=1按行取平均值,reshape让数据能够广播 sigma = np.std(data, axis=1).reshape(-1,1)#std poor = np.subtract(data, mu)原创 2021-06-05 11:22:43 · 419 阅读 · 0 评论 -
torch中的spmm
系列文章目录本系列记录自己的代码学习知识torch.matmul的前后两个矩阵维度不同的小结torch中的transpose和view的不同torch中的spmm系列文章目录前言一、torch中的spmm总结前言一、torch中的spmm我自己运行的结果,spmm就是矩阵乘法例:z = y.transpose(0,1)output = torch.spmm(y, z)print('z:',z,'y:',y)print('output:',output)z: tensor原创 2021-05-19 09:55:36 · 16451 阅读 · 9 评论 -
torch中的transpose和view的不同
系列文章目录本系列记录自己的代码学习知识torch.matmul的前后两个矩阵维度不同的小结torch中的transpose和view的不同系列文章目录前言一、torch中的transpose二、torch中的view总结前言一、torch中的transposetranspose转置矩阵c = ([[[1,2,3],[1,2,3],[1,2,3]]])c=torch.tensor(c)print('c.shape',c.shape)c.shape torch.Size([1原创 2021-05-19 09:18:23 · 1058 阅读 · 0 评论 -
torch.matmul的前后两个矩阵维度不同的小结
系列文章目录本系列记录自己的代码学习知识torch.matmul的前后两个矩阵维度不同的小结系列文章目录前言一、torch.matmul()二、详解解释1.input维度比other大2.input维度比other小总结前言一、torch.matmul()torch.matmul()也是一种类似于矩阵相乘操作的tensor联乘操作。但是它可以利用python 中的广播机制,处理一些维度不同的tensor结构进行相乘操作。这也是该函数与torch.bmm()区别所在。torch.matm原创 2021-05-18 22:23:02 · 1825 阅读 · 0 评论 -
VGG Practical Category Detection
系列文章目录VGG Image Classification PracticalPractical Category Detection系列文章目录前言一、检测原理1.0加载数据集1.1可视化训练图案1.2 在训练中提取HOG特征1.3简单的HOG模型1.4测试模型1.5提取上层检测二、带有支持向量机的多尺度学习2.1 多尺度检测2.2 收集正面和负面训练数据2.3 支持向量机学习模型2.4 评估模型质量三、多目标检测与评估3.1检测多个目标3.2 检测器评估3.3多幅图像未完待续总结前言对象原创 2020-12-08 15:05:17 · 555 阅读 · 0 评论 -
李宏毅作业六 Adversarial Attack对抗攻击
作业六 Adversarial Attack对抗攻击前言一、下载资料并解压缩二、创建环境1.引入库2.读取资料三、载入模型四、运行成果五、生成攻击后的图片总结前言作业里,不仅有原始注释,还有我自己附加的注释,有不对的地方还请大家多多指教运行环境是cloabpython3一、下载资料并解压缩# 下載資料!gdown --id '14CqX3OfY9aUbhGp4OpdSHLvq2321fUB7' --output data.zip# 解壓縮!unzip -qq -u data.zip原创 2020-10-27 19:11:20 · 1800 阅读 · 3 评论 -
李宏毅作业十二 Transfer Learning(迁移学习)
系列文章目录李宏毅作业十 Generative Adversarial Network生成对抗网络(代码)李宏毅作业九 Anomaly Detection异常检测李宏毅作业八unsupervised无监督聚类学习李宏毅作业七其三 Network Compression (Network Pruning)李宏毅作业七其二 Network Compression (Knowledge Distillation)李宏毅作业七其一 Network Compression (Architecuture D原创 2020-12-01 14:13:42 · 1110 阅读 · 4 评论 -
VGG Convolutional Neural Network Practical
系列文章目录VGG Image Classification Practical提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档Convolutional Neural Network Practical系列文章目录前言一、准备工作1.环境2.加载准备模块二、CNN的构建1.卷积2.非线性激活函数3.池化4.归一化二、CNN的构建总结前言根据VGG教程里的简介,我们可以很清楚的知道关于CNN的以下知识:卷积神经网络是一类重要的深度学习网络,适用于许多计算机视觉问题。特别是,原创 2020-11-29 11:31:22 · 834 阅读 · 0 评论 -
VGG Image Classification Practical
VGG Image Classification Practical提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档VGG Image Classification PracticalVGG Image Classification Practical前言一、加载绘图模块二、三种分类器1.数据准备2.训练摩托车分类器3.对测试图像进行分类并对其性能进行评估4.原创 2020-11-28 18:35:13 · 754 阅读 · 0 评论 -
李宏毅作业十 Generative Adversarial Network生成对抗网络(代码)
Generative Adversarial Network 生成对抗网络前言一、生成对抗网络1.生成对抗网络是什么2.数学公式二、代码1.下载数据2.数据预处理3.随机种子4.模型5.准备训练6.训练开始7.使用生成器生成图片总结前言本篇以代码为主,不过多涉及理论。平台colab,语言python一、生成对抗网络1.生成对抗网络是什么生成对抗网络中包含了两个模型,一个是生成模型G,另一个是判别模型D,下面通过一个生成图片的例子来解释两个模型的作用:生成模型G:不断学习训练集中真实数据的概原创 2020-11-20 18:18:10 · 1712 阅读 · 3 评论 -
李宏毅作业九 Anomaly Detection异常检测
Anomaly Detection异常检测前言一、异常检测?任务:半监督训练中的异常检测标签:二、代码1.加载数据与环境2.异常检测算法@KNN@PCA3.模型和损失4.训练5.验证总结前言本篇不涉及过多理论,半监督训练的异常检测其实就是在同时含有标注数据和未标注数据的训练集中学习模型。闲话少说,理论过完,看了代码基本就知道到底是怎么实现的了。一、异常检测?半监督的异常检测:即从同时含有标注数据和未标注数据的训练集中学习模型。在监督学习中,因为训练集全部已经标记了,所以我们的兴趣点通常是在未来测原创 2020-11-18 15:31:07 · 1585 阅读 · 11 评论 -
vs 上 pytorch安装问题
前言唯有日夜兼程 披星斩棘方能到达梦的彼端记录一点一滴,才能聚沙成塔。项目场景:使用vs2019,在虚拟环境中,python安装pytorch安装不上去的问题。共两个问题。ERROR: Command errored out with exit status 1:Traceback (most recent call last):问题描述:在我自己创建的虚拟环境中,直接在vs内的环境包窗口安装pytoch失败,然后转到命令窗口还是安装不上去。本人也就是小白,所以从网上搜寻方法组合解决原创 2020-11-14 15:57:28 · 1269 阅读 · 0 评论