系列知识小结目录
Cox比例风险回归模型(proportional hazards model)
Fisher's exact test费希尔检测
前言
这里记录了我在学习过程学到的一些统计学知识
有哪些不对的地方,希望大家能够多多批评和指正。
资料大部分来自维基百科,部分是我个人的理解。
一、Fisher’s exact test费希尔检测是什么?
Fisher精确检验是列联表分析中使用的统计显着性检验。
- 小样本使用该方法最佳,不过,不管样本数量如何,都可以使用该方法。
- 发明者Ronald Fisher
- 可以精确计算出与零假设(例如,P值)的偏差的显着性,而不是依赖于近似值与许多统计检验一样,随着样本数量增加到无穷大,其极限值变得精确。
- 背景故事,费雪的牛奶茶实验。
二、原理与公式
1.适用范围和目的
该测试对于以两种不同方式对对象进行分类得到的分类数据很有用;它用于检查两种分类之间的关联(偶然性)的重要性。
- Fisher测试的大多数用途都涉及2×2列联表。该p值从测试中得出的结果就好像表格的边距是固定的一样
- 对于人工计算,该测试仅在2×2列联表中可行。然而,测试的原理可以扩展到m × n表的一般情况。这时候一般使用软件包。
- 大样本虽然可用,但计算量太大,一般会转用卡方检验或者G检验。
2.公式的应用
这是维基百科上的例子
已知一个教室24个学生
- 10名在学习
- 12名女生
让我们预测男生,女生分别在学习和不在学习的人数。
1.进行假设
现在
那我们提出一个假设
这是对各项的设值
例:设在学习的男生有a名
2.运用公式求概率P值
我们费希尔检测的公式如下:
实质就是各项阶乘的商。
这里求出的p值就是我们之前提出的假设的概率。
3.评估
求出P值,我们将能得出我们提出的假设有多大的可能性。
我假设只有一名男生学习,即a=1;
那么这种假设下,b=9,c=11,d=3.
p值如下:
这时候,我们要做出决策,我们之前做出的假设是否能够被采用
- 评估标准
- 拒绝Fisher检验为其分配p值等于或小于5%的每个表的原假设
即
我们要否定之前的做出的假设。
我们之前的假设不成立。
这个拒绝值还可以设为1%。
总结
不足之处,还请大家多多批评!!