滑坡易发性的流程
指标分级
在学习滑坡易发性的过程中,发现存在很多小问题。传统的方法认为影响因素很大,在进行指标分级时,客观性即经验存在很大影响,不同的人对指标分级存在差异,导致结果会有很大的差别。
个人觉得指标分级的过程不外乎是个加大两级分化即将信息量大(对滑坡影响较大)的分级归为一类,加大这一区域的影响,缩小其余区域的影响,导致低易发区和高易发区之间差值明显,用尽可能小的区域去包含尽可能多的已知滑坡,即滑坡比率最大,证明结果的可靠性。这一分级过程类似聚类分析的思想,将信息量大的区域聚合在一起,形成较强的区域去影响滑坡,信息量小的区域聚合在一起,表明对滑坡影响较小。
我使用的是k-means分类,代码我就不贴了,感觉还有点小问题,目前我是固定分级数,后续考虑根据算法来自我选择分级数,可能会更好,完全实现自动化。
计算方法
指标分级完了之后用最传统的信息量法或深度学习其中的方法也行,如随机森林、神经网络、逻辑回归、SVM等都可以。
流程图
这是我自己画的流程图,可能不是很规范,大概就是这样的一个意思,因此实现易发性评价的全自动化是很有可能的,以及在WEB端与用户进行交互也是存在可能的。
后续
后面可能会学习前端怎么调用本地文件进行处理,调用python是可行的,但是每个人的电脑不一样,如果要调用用户电脑的数据,在前端怎么实现才好,暂时没有接触过这些。