滑坡易发性的流程

滑坡易发性的流程

指标分级

在学习滑坡易发性的过程中,发现存在很多小问题。传统的方法认为影响因素很大,在进行指标分级时,客观性即经验存在很大影响,不同的人对指标分级存在差异,导致结果会有很大的差别。
个人觉得指标分级的过程不外乎是个加大两级分化即将信息量大(对滑坡影响较大)的分级归为一类,加大这一区域的影响,缩小其余区域的影响,导致低易发区和高易发区之间差值明显,用尽可能小的区域去包含尽可能多的已知滑坡,即滑坡比率最大,证明结果的可靠性。这一分级过程类似聚类分析的思想,将信息量大的区域聚合在一起,形成较强的区域去影响滑坡,信息量小的区域聚合在一起,表明对滑坡影响较小。
我使用的是k-means分类,代码我就不贴了,感觉还有点小问题,目前我是固定分级数,后续考虑根据算法来自我选择分级数,可能会更好,完全实现自动化。

计算方法

指标分级完了之后用最传统的信息量法或深度学习其中的方法也行,如随机森林、神经网络、逻辑回归、SVM等都可以。

流程图

这是我自己画的流程图,可能不是很规范,大概就是这样的一个意思,因此实现易发性评价的全自动化是很有可能的,以及在WEB端与用户进行交互也是存在可能的。

在这里插入图片描述

后续

后面可能会学习前端怎么调用本地文件进行处理,调用python是可行的,但是每个人的电脑不一样,如果要调用用户电脑的数据,在前端怎么实现才好,暂时没有接触过这些。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值