Pytorch学习日记01-DataLoader的使用从数据库中随机抓取

主要利用lLoader进行展示多幅图片,并初步了解到神经网络传输的简单内容。

import torchvision.datasets
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
"""
    用处就是去数据集取出所要的内容
    主要参数功能解释
        dataset 传入数据集
        batch_size 每次抓取的个数
            img0+target0=data_set0
            img1+target1=data_set1
            img2+target2=data_set2
            img3+target3=data_set3
            一个loader就会存储4个img  所以大小变成了torch.Size([4, 3, 32, 32]) 4图片3通道32*32
            存储四个图片的标签就会变成              tensor([9, 2, 1, 5]) 第一幅类型9,第二幅图类型延续下去
        shuffle  重复遍历数据集结果是否一样。False则两轮遍历相同,True则不同默认
        num_workers 是否采用多进程加载。0则为主进程加载
        drop_last  True会舍去不满足batch_size整数倍的图片。False则不会
"""
# 准备测试集
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())

test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)
# 借助tensorboard进行一个展示索取出的一个图像集
writer = SummaryWriter("dataloader")

step = 0
for data in test_loader:
    imgs, target = data
    # print(img.shape)    # print(target)
    # 此时的img不在是一张图片,个数为你的batch_size的大小使用images
    writer.add_images("drop_last", imgs, step)
    step += 1
writer.close()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值