左神算法初级班1笔记:冒泡、选择、插入、归并、对数器、递归、小和与逆序对问题

写在前面

  • 最近觉得leetcode好多题解看起来很费劲,于是想想该恶补恶补算法了,很多大佬推荐左神左程云的算法课,所以有了这篇笔记。
  • 今天是左神迷妹的一天。
  • 有需要学习资源啥的小伙伴可以评论私信都行。

01 | 冒泡排序

  • 时间复杂度O(n*n),空间复杂度O(1)
public void bubbleSort(int[] a){
	if(a == null || a.length < 2){
		return;
	}
	for(int i = a.length-1; i > 0; i--){
		for(int j = 0; j < i; j++){
			if(a[j] > a[j+1]){
				swap(a, j, j+1);  
			}
		}
	}
}

public void swap(int[] a, int i, int j){
	a[i] = a[i] ^ a[j];
	a[j] = a[i] ^ a[j];
	a[i] = a[i] ^ a[j];
}

02 | 选择排序

  • 时间复杂度O(n*n),空间复杂度O(1)
public void selectSort(int[] a){
	if(a == null || a.length < 2){
		return;
	}
	for(int i = 0; i < a.length-1; i++){
		int minIndex = i;
		for(int j = i+1; j < a.length; j++){
			minIndex = a[j] < a[minIndex] ? j : minIndex;
		}
		if( minIndex != i ){
			swap(a, i, minIndex);
		}
	}
}

03 | 插入排序(整牌)

  • 时间复杂度:最坏情况O(n*n),最好情况O(n),空间复杂度O(1)
public void insertSort(int[] a){
	if(a == null || a.length < 2){
		return;
	}
	for(int i = 1; i < a.length; i++){
		for(int j = i-1; j >= 0 && a[j] > a[j+1]; j-- )
			swap(a, j, j+1);
	}
}

04 | 对数器

  • 用于验证你写的算法是否正确:
    1. 有一个你想要测的方法a,
    2. 实现一个绝对正确但是复杂度不好的方法b
    3. 实现一个随机样本产生器
    4. 实现比对的方法
    5. 把方法a和方法b比对很多次来验证方法a是否正确。
    6. 如果有一个样本使得比对出错,打印样本分析是哪个方法出 错
    7. 当样本数量很多时比对测试依然正确,可以确定方法a已经正确
  • 笔试需准备模板,如,数组、二叉树等对数器的模板
  • 堆、排序等也有模板
package class_01;

import java.util.Arrays;

public class BubbleSort {
    //1.你想要测的方法a
    public static void bubbleSort(int[] arr){
        if (arr == null || arr.length < 2){
            return;
        }

        for (int i = arr.length-1; i > 0; i--){
            for (int j = 0; j < i; j++ ){
                if (arr[j] > arr[j+1]){
                    swap(arr, j, j+1);
                }
            }
        }
    }

    public static void swap(int[] arr, int i, int j){
    	if(i == j) 
    	 	return; //防止&a,&b指向同一个地址;那样结果会错误,导致结果为0。
        arr[i] = arr[i] ^ arr[j];
        arr[j] = arr[i] ^ arr[j];
        arr[i] = arr[i] ^ arr[j];
    }

    //2.绝对正确但是复杂度不好的算法
    public static void comparator(int[] arr){
        Arrays.sort(arr);
    }

    //3.实现一个随机样本产生器
    public static int[] generateRandomArray(int maxSize, int maxValue){
        int[] arr = new int[(int)((maxSize + 1) * Math.random())];
        for(int i = 0; i < arr.length; i++){
            arr[i] = (int)((maxValue + 1) * Math.random()) - (int)(maxValue * Math.random());
        }
        return arr;
    }

    //4.实现比对的方法
    public static boolean isEqual(int[] arr1, int[] arr2){
        if((arr1 == null && arr2 != null) || (arr1 != null && arr2 == null)){
            return false;
        }
        if(arr1 == null && arr2 == null){
            return true;
        }
        if(arr1.length != arr2.length){
            return false;
        }
        for(int i = 0; i < arr1.length; i++){
            if(arr1[i] != arr2[i]){
                return false;
            }
        }
        return true;
    }

    //复制数组
    public static int[] copyArray(int[] arr) {
        if (arr == null) {
            return null;
        }
        int[] res = new int[arr.length];
        for (int i = 0; i < arr.length; i++) {
            res[i] = arr[i];
        }
        return res;
    }

    public static void printArray(int[] arr) {
        if (arr == null) {
            return;
        }
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }



    public static void main(String[] args) {
        int testTime = 500000;
        int maxSize = 100;
        int maxValue = 100;
        boolean succeed = true;

        for (int i = 0; i < testTime; i++){
            int[] arr1 = generateRandomArray(maxSize,maxValue);
            int[] arr2 = copyArray(arr1);
            bubbleSort(arr1);
            comparator(arr2);
            if (!isEqual(arr1,arr2)){
                succeed = false;
                printArray(arr1);
                printArray(arr2);
                break;
            }
        }
        System.out.println( succeed ? "Nice!" : "辣鸡");
    }
}

05 | 递归

  • 递归:系统在帮你压栈,系统保护了函数的所有东西,等递归回来的时候,将数据原样还原。具体可参考:递归图解

  • 递归复杂度分析:

    1. master公式的使用:前提:子过程规模需一致!!

      T(N) = a*T(N/b) + O(N^d)

      其中:N为父问题的样本量,N/b为子过程样本量,a为子过程发生次数,O(N^d) 为剩余过程的时间复杂度

    2. 复杂度计算方法:

      1. log(b,a) > d : 复杂度为O(N^log(b,a))
      2. log(b,a) = d : 复杂度为O(N^d * logN)
      3. log(b,a) < d : 复杂度为O(N^d)
  • 举个栗子:给定数组,求出最大值

    1. 递归求法:把一个数组拆分成两个部分,左部分和右部分,然后分别对每个部分求最大值,最后两个部分进行比较。

      public static int getmax(int[] arr,int left,int right){
      	if (left==right) {
      		return arr[left];
      	}
      	int mid=left+(right-left)>>2;
      	int leftmax=getmax(arr, left, mid);
      	int rightmax=getmax(arr, mid+1, right);
      	return Math.max(leftmax, rightmax);
      }
      
    2. 利用master公式对其进行复杂度分析:
      两个同等规模的子过程(两次递归)===》a=2
      将过程分为两个子过程 ====》b=2
      剩余过程只有比较 =====》 d=0
      因此:

      T(N) = 2*T(N/2) + O(1)

      复杂度为O(logN)

06 | 归并排序

  • 该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案”修补”在一起,即分而治之)。
    在这里插入图片描述
public class MergeSort {
    public static void mergeSort(int[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        mergeSort(arr, 0, arr.length - 1);
    }

    public static void mergeSort(int[] arr, int l, int r) {
        if (l == r) {
            return;
        }
        int mid = l + ((r - l) >> 1);
        mergeSort(arr, l, mid);
        mergeSort(arr, mid + 1, r);
        merge(arr, l, mid, r);
    }

    public static void merge(int[] arr, int left, int mid, int right) {
        int[] res = new int[right - left + 1];
        int i = 0;
        //双指针
        int p1 = left, p2 = mid + 1;
        while (p1 <= mid && p2 <= right) {
            res[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
        }
        while (p1 <= mid) {
            res[i++] = arr[p1++];
        }
        while (p2 <= right) {
            res[i++] = arr[p2++];
        }
        for (int j = 0; j < res.length; j++) {
            arr[left + j] = res[j];
        }
    }
	public static void main(String[] args) {
		…………
		mergeSort(arr1);
		…………
	}

}
  • 复杂度分析同递归,T(N) = 2*T(N/2) + O(N) = O(NlogN)

07 | 小和问题

  • 在一个数组中,每一个元素左边比当前元素值小的元素值累加起来,叫做这个数组的小和

    [1,3,4,2,5]
    1左边比1小的数,没有;
    3左边比3小的数,1;
    4左边比4小的数,1、3;
    2左边比2小的数,1;
    5左边比5小的数,1、3、4、2;
    所以小和为1+1+3+1+1+3+4+2=16

    思路:归并方法将将时间复杂度降到O(nlogn),这道题换个角度来想,题目要求的是每个数左边有哪些数比自己小,其实不就是右边有多少个数比自己大,那么产生的小和就是当前值乘以多少个
    1. 先将其分组为如下所示

  1. 过程如下:
    1和3对比,1比3小,res+1=1,同时将1放入help数组;
    1、3只剩3,将3放入help数组;
    1、3与4对比,1比4小,res+1=2, 同时指针移动到3;
    3与4对比,3比4小,res+3=5;此时两组对比完成,将4放入help数组;
    目前help数组为 [1,3,4]
    同理,右半部分比较完成时,help数组为[1,3,4,2,5]; res=7;
    现在,将左半部分与右半部分进行比较(采用双指针);
    p1指针指向数字1,p2指针指向数字2,发现1<2,于是res+1*2=9,
    接着p1前进指向数字3;经过比对,p1>p2,所以p2前进指向数字5,此时p1=3<p2=5,因此res+3=12;
    p1继续前进,指向数字4,此时p1=4<p2=5,因此res+4=16,至此比对结束,小数和为16。

  2. 关于下列代码,对 res += arr[p1] < arr[p2] ? (right-p2+1) * arr[p1] : 0; 的理解:
    在这里插入图片描述

    public static int smallSum(int[] arr){
        if (arr == null || arr.length < 2){
            return 0;
        }
        return mergeSort(arr,0, arr.length-1);
    }
    public static int mergeSort(int[] arr, int left, int right){
        if(left == right){
            return 0;
        }
        int mid = left + ((right - left) >> 1);
        return mergeSort(arr, left, mid) + mergeSort(arr, mid+1, right) + merge(arr,left,mid,right);
    }
    
    public static int merge(int[] arr, int left, int middle, int right){
        int[] help = new int[right - left + 1];
        int i = 0;
        int p1 = left, p2 = middle + 1;
        int res = 0;
    
        while (p1 <= middle && p2 <= right){
            res += arr[p1] < arr[p2] ? (right-p2+1) * arr[p1] : 0;
            help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
        }
        while (p1 <= middle){
            help[i++] = arr[p1++];
        }
        while (p2 <= right){
            help[i++] = arr[p2++];
        }
        for (i = 0; i < help.length; i++) {
            arr[left+i] = help[i];
        }
        return res;
    }
    

08 | 逆序对问题

  • 在一个数组中,左边的数如果比右边的数大,则这两个数构成一个逆序对,请打印所有逆序 对。
  • 举个栗子:

    [4,5,8,3,2,1]
    全部逆序对:(3,2)(3,1)(2,1)(8,3)(8,2)(8,1)(5,3)(5,2)(5,1)(4,3)(4,2)(4,1)

package class_01;

public class Inverse {

    public static void InversePair(int[] arr){
        if (arr == null || arr.length<2){
            return;
        }
        mergeSort(arr,0,arr.length-1);
    }
    public static void mergeSort(int[] arr,int L,int R){
        if(L == R) {
            return;
        }
        int mid = L + ((R-L) >> 1); 
        mergeSort(arr,L,mid); //T(N/2)
        mergeSort(arr,mid+1,R); //T(N/2)
        merge(arr,L,mid,R); 
    }
    public static void merge(int[] arr,int L,int M,int R){
        int[] temp = new int[R-L+1];
        int i = 0;
        int p1 = L;
        int p2 = M+1;
        while(p1<=M && p2<=R){
            for(int j=0;j+p2<=R;j++){
                System.out.print(arr[p1] > arr[p2] ? "("+arr[p1]+","+arr[p2+j]+")" : "");
            }
            temp[i++] = arr[p1] > arr[p2] ? arr[p1++] : arr[p2++];
        }
        //只有一个越界
        while(p1 <= M){
            temp[i++] = arr[p1++];
        }
        while(p2 <= R){
            temp[i++] = arr[p2++];
        }
        for(i =0;i<temp.length;i++){
            arr[L+i] = temp[i];
        }
    }

    public static void main(String[] args) {
        int[] arr = {4,5,8,3,2,1};
        InversePair(arr);
    }
}
  • 初级班第一节课完成。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值