CNN实现mnist手写识别/CIFAR10数据集(PyTorch)

import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt
import os
import cv2
from torchvision import transforms

torch.manual_seed(1)  # 使用随机化种子使神经网络的初始化每次都相同

# 超参数
EPOCH = 10  # 训练整批数据的次数
BATCH_SIZE = 50
LR = 0.001  # 学习率
DOWNLOAD_MNIST = True  # 表示还没有下载数据集,如果数据集下载好了就写False

# # 下载mnist手写数据集
# train_data = torchvision.datasets.MNIST(
#     root='./data/',  # 保存或提取的位置  会放在当前文件夹中
#     train=True,  # true说明是用于训练的数据,false说明是用于测试的数据
#     transform=torchvision.transforms.ToTensor(),  # 转换PIL.Image or numpy.ndarray
#
#     download=DOWNLOAD_MNIST,  # 已经下载了就不需要下载了
# )
#
# test_data = torchvision.datasets.MNIST(
#     root='./data/',
#     train=False  # 表明是测试集
# )


# 对训练集及测试集数据的不同处理组合
transform_train = transforms.Compose([
    transforms.RandomHorizontalFlip(),
    transforms.RandomGrayscale(),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# 准备数据
train_data = torchvision.datasets.CIFAR10("../dataset", train=True, transform=transform_train, download=True)

test_data = torchvision.datasets.CIFAR10("../dataset", train=False, transform=t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值