import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt
import os
import cv2
from torchvision import transforms
torch.manual_seed(1) # 使用随机化种子使神经网络的初始化每次都相同
# 超参数
EPOCH = 10 # 训练整批数据的次数
BATCH_SIZE = 50
LR = 0.001 # 学习率
DOWNLOAD_MNIST = True # 表示还没有下载数据集,如果数据集下载好了就写False
# # 下载mnist手写数据集
# train_data = torchvision.datasets.MNIST(
# root='./data/', # 保存或提取的位置 会放在当前文件夹中
# train=True, # true说明是用于训练的数据,false说明是用于测试的数据
# transform=torchvision.transforms.ToTensor(), # 转换PIL.Image or numpy.ndarray
#
# download=DOWNLOAD_MNIST, # 已经下载了就不需要下载了
# )
#
# test_data = torchvision.datasets.MNIST(
# root='./data/',
# train=False # 表明是测试集
# )
# 对训练集及测试集数据的不同处理组合
transform_train = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomGrayscale(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# 准备数据
train_data = torchvision.datasets.CIFAR10("../dataset", train=True, transform=transform_train, download=True)
test_data = torchvision.datasets.CIFAR10("../dataset", train=False, transform=t
CNN实现mnist手写识别/CIFAR10数据集(PyTorch)
最新推荐文章于 2025-04-13 13:06:01 发布